European Union (EU) Council Directive 2004/108/EC Electromagnetic Compatibility (EMC) and FCC Part 15 Subpart B Class B Test Report for Information Technology Equipment

Sensoray

Model 826-PCI Express Analog and Digital I/O Module

June 14, 2013

Tests Conducted by:

ElectroMagnetic Investigations, LLC

20811 NW Cornell Road, Suite 600, Hillsboro, Oregon 97124, USA Tele (503) 466-1160 Fax (503) 466-1170 support@emicomply.com

EMI4019.04	Testing Report	Page 1 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

Test Summary Information	
Revision History Authorizations	5
Device Under Test Information	5 7
Device Under Test Selection Justification	8
Emissions Test Report	9
Radiated Emissions Information	10
Purpose DUT Modifications	11
Radiated Emissions Results	12
Auxiliary Equipment in measurement area	12
Auxiliary Equipment outside measurement area	12
Cables	12
Measurement Bandwidths	12
Radiated Emission Plots	14
Purpose	20
DUT Modifications	20
Conducted Emissions Results	21
Auxiliary Equipment in measurement area	21
Auxiliary Equipment outside measurement area Cables	21
Measurement Bandwidths	21 22
Purpose	30
DUT Modifications	30
Power Line Harmonics and Voltage Fluctuation Results	31
Auxiliary Equipment in measurement area	31
Auxiliary Equipment outside measurement area	31
Cables	31
Power Line Harmonics and Voltage Fluctuation Data Sheet	32
Power Line Harmonics and Voltage Fluctuation Photographs	36
Immunity Test Report	37
ElectroStatic Discharge (ESD) Information	38
Purpose	39
DUT Modifications	39
ElectroStatic Discharge Results	40
Auxiliary Equipment in measurement area	40
Auxiliary Equipment outside measurement area Cables	40 40
Radiated Immunity Information	45
Purpose	45
DUT Modifications	46
Radiated Immunity Results	47
Auxiliary Equipment in measurement area	47
Auxiliary Equipment outside measurement area	47

Cables Radiated Immunity Data Sheet	47 48
Radiated Immunity Photographs	49
Electrical Fast Transients (burst) Immunity Information	
Purpose	53
DUT Modifications	53
Electrical Fast Transient (burst) Immunity Results Auxiliary Equipment in measurement area	54 54
Auxiliary Equipment outside measurement area	54
Cables	54
Electrical Fast Transient (burst) Immunity Data Sheet	55
Surge Immunity Information	57
Purpose	59
DUT Modifications	59
Surge Immunity Results	60
Auxiliary Equipment in measurement area	60
Auxiliary Equipment outside measurement area	60
Cables Surge Immunity Data Sheet	60 61
Surge Immunity Data Sneet Surge Immunity Photographs	62
RF Conducted Immunity Information	63
Purpose	63
DUT Modifications	64
Conducted Immunity Results	65
Auxiliary Equipment in measurement area	65
Auxiliary Equipment outside measurement area	65
Cables Conducted Immunity Data Sheet	65 66
Conducted immunity Photographs	67
Voltage Sag and Interrupts Immunity Information	69
Purpose	69
DUT Modifications	70
Auxiliary Equipment in measurement area	71
Auxiliary Equipment outside measurement area	71
Cables	71
Voltage Sag and Interrupts Immunity Photographs	73
Appendix A: Performance Criteria	
Performance Criteria A	74
Performance Criteria B	74
Performance Criteria C Performance Criteria D	74 75

Test Summary Information

Report Number: SEN20130412 Issue Date: June 14, 2013

Test Item: Model 826 – PCI Express Analog and Digital I/O Module

Serial Number: 519698

Emissions:

Result	Product Standard	Test Standard	Description
Pass	EN55022:2010/CISPR 22Ed6:2008 Class B/FCC Part 15 Subpart B Class B	EN55022:2010/CISPR 22Ed6:2008 Class B/FCC Part 15 Subpart B Class B	Radiated Emissions
Pass	EN55022:2010/CISPR 22Ed6:2008 Class B/FCC Part 15 Subpart B Class B	EN55022:2010/CISPR 22Ed6:2008 Class B/FCC Part 15 Subpart B Class B	Conducted Emissions
Pass	EN61000-3-2:2006 +A1:2009+A2:2009	EN61000-3-2:2006 +A1:2009+A2:2009 Class A	Power line Harmonics
Pass	EN61000-3-3:2008/IEC 61000- 3-3:2008	EN 61000-3-3:2008/IEC 61000- 3-3:2008 Class A	Power line Voltage Fluctuation & Flicker

Immunity:

		Test		Performance	
Result	Product Standard	Standard	Description	Criteria	Test Levels
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-2:2010	Electrostatic Discharge Immunity	Criteria B	4 kV Contact Discharge 8 kV Air Discharge
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-3:2010	RF Field Immunity	Criteria A	3 V/m, 80-1000 MHz 3 V/m, 1.4-2 GHz 1 V/m, 2-2.7 GHz
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-4:2010	Electrical Fast Transient/Burst (EFT) Immunity	Criteria B	1 kV peak
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-5:2005	Electrical Slow Transient (Surge) Immunity	Criteria B	1 kV peak – DM 2 kV peak - CM
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-6:2008	RF Conducted Immunity	Criteria A	3 Vrms, 150 kHz to 80 MHz
N/A	EN55024:2010 (CISPR 24 Ed2:2010)	IEC 61000- 4-8:2009	Magnetic Field Immunity	Criteria A	3 A/m, 50 & 60 Hz
Pass	EN55024:2010 (CISPR 24 Ed2:2010)	EN61000-4- 11:2004	Voltage Interruption Immunity	Various	>95% drop, 10 mS - Perf. B 30% dip 0.5 S - Perf. C >95% drop, 5 S - Perf. C

- The Equipment was tested in the configuration and modes of operation provided by the client. Test levels were specified by the client within the test plan. Any additional tests not reported herein are the responsibility of the client as the overall product compliance is the responsibility of the client
- This report may only be reproduced in its entirety. To reproduce this report in part, specific written permission must be obtained from ElectroMagnetic Investigations.
- The results presented in this test report pertain only to the test items described within this report.
- Specific test descriptions can be found in the specific individual section of the test report.
 Deviations to the Test Standard

No Deviations were made to the standard test methods

Revision History

Version	Date Issued	Description of Revision

Authorizations

FCC: The 3-meter Semi-Anechoic Chamber and Conducted Emissions facilities are fully described in reports filed with the Federal Communications Commission. Corresponding letters of acceptance are maintained in our files.

Industry Canada: Accepted by Industry Canada for performance of radiated emissions measurements.

European Union (CE): ElectroMagnetic Investigations, LLC is equipped and capable of performing EMC CE compliance testing to European Union EMC CE requirements for Information Technology Equipment (ITE), Measurement, Control and Laboratory Equipment (MCL), and other equipment.

American Association of Lab Accreditations (A2LA): ElectroMagnetic Investigations is accredited to perform the tests contained within this report to the standards listed.

Report Approved By:		
Heng W. Beite Signature	17 June 2013 Date	<u>Henry Benitez</u> Name
Report Written By: Jacqueline Benity Signature	<u>14 June 2013</u> Date	<u>Jackie Benitez</u> Name
Testing Performed By: Ryan Berity Signature Henz W. Berits Signature	25 April 2013 Date 31 May 2013 Date	Ryan Benitez Name Henry Benitez Name
Signature	 Date	Name

Testing requested by:

Company Name:	Sensoray
Company Address:	7313 SW Tech Center Drive
City, State Zip:	Portland, OR. 97223
Test Requested By:	Alexander Kostromitin
Model:	Model 826
First Date of Test:	April 15, 2013
Last Date of Test:	April 25, 2013
Date Samples Received:	April 15, 2013
Equipment Design Stage:	Production
Equipment Condition:	Good

Device Under Test Information

Device Under Test	Model 826 – PCI Express Analog and Digital I/O Module
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
I/O Ports	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System	Windows
Exercising Software	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz

Device Under Test Selection Justification

 Sensoray certifies that product tested is a representative sample of unit to be sold.

I, <u>Bill Tanner</u>, <u>Jr.</u>, representative for Sensoray verify that the product tested is representative of units to be sold.

Bill Tamenh

(Signature)

Emissions Test Report

Radiated Emissions Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed on a non-conducting tabletop 80 cm tall. Each device is placed on the tabletop 10 cm from its neighboring device. The excess cable length was draped off of the rear of the table. If the excess cable fell closer than 40 cm from the ground plane, the cable were bundled in non-inductive bundles of 30-40 cm loops (when possible) to maintain 40 cm in height. The measurement antenna was then placed 3 m from the closest approach of the DUT/AE system. Any AE that had to be placed outside the measurement area was setup either outside of the chamber or under the floor, depending on size and convenience.

The DUT and the AE were operated in the modes specified by the client while the emissions were measured.

To measure the emissions at the frequency range specified in this report, a preliminary scan was performed with a linearly polarized antenna while the turntable was rotated 360 degrees and the antenna mast was raised from 1 meter height to 4 meters in height in both a horizontal polarization and a vertical polarization. Any emissions that were found to be within 6 dB of the specified limit were then maximized to find the level that was recorded.

The maximization process included manual manipulation of the cables, continuous height scanning, and continuous azimuth scanning.

Device Under Test	Model 826	
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board	
Serial Number	519698	
I/O Ports Populated for test	5	
Clock Frequencies (>9kHz)	50 MHz	
Modes of Operation	Sending and receiving analog and digital signals	
Operating System (Version)	Windows	
Exercising Software (Version)	826 Test Application S/W	
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz	
Frequency Range Tested	30 MHz to 1 GHz	

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic emission limits as specified by EN55022: 2010 / CISPR 22 Ed.6: 2008 Class B Information technology equipment – Radio disturbance characteristics - Limits and Methods of Measurements to support compliance to the European Union EMC Directive 2004/108/EC, FCC Part 15 Subpart B Class B, and other regulations based on this standard.

The radiated emissions test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed. The testing was performed at a facility which meets the requirements set forth by ANSI C63.4, including but not limited to mains impedance, cable bundling, and Volumetric Normalized Site Attenuation. The emissions reported were maximized through a combination of turntable (or azimuth) maximization, tower (or height) maximization, and cable maximization.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Radiated Emissions Results

Test Standards: EN55022: 2010 / CISPR 22 Ed.6: 2008 Class B and FCC Part 15 Subpart B Class B

Radiated Emissions: Emissions are within specification limits.

Test Measurement uncertainties (k=2.05):

Radiated Field strength at 3m measured with:

Chase Bicon (30 MHz – 1 GHz)..... ±5.6 dB

Sample radiated emissions field strength measurement:

RF Reading from Spectrum Analyzer $(dBuV) + Cable\ Loss\ Factor\ (dB) + Antenna\ Factor\ (dB) - Pre-Amplifier Amplification\ (dB) = Final\ Radiated\ Emission\ Level\ (dBuV/m).$

Auxiliary Equipment in measurement area

Device	Manufacturer	Model Number	Serial Number
Computer	HP	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement area. Emissions from this equipment could increase the emissions measured.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement area. Emissions from this equipment will not increase the emissions measured.

Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Measurement Bandwidths

EMI4019.04	Testing Report	Page 12 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

Frequency (MHz)	Peak (kHz)	Quasi-Peak (kHz)	Average (kHz)
0.15 - 30	9.0	9.0	9.0
30 – 1000	120	120	120
>1000	1000	N/A	1000

Radiated Emission Plots

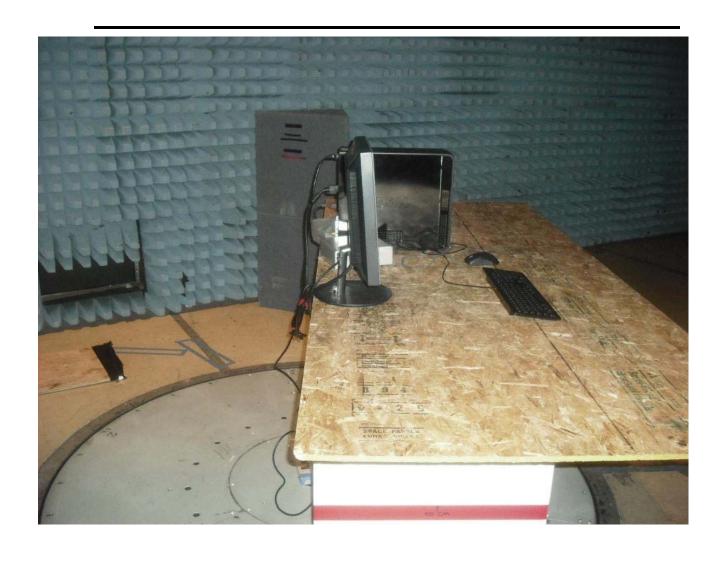
EN55022:2010/CISPR 22Ed6:2008 Class B	rence Number: SE Test Date: 18- Location: Hill Profile Version: 2.1	Apr-2013 sboro	Temperature (⁶ Relative Humidity (Barometric Pressu Test Distance (i	%): 30 ure: 29	Device Under Test (DUT): Serial Number. Test Filename: Test Operator:	519698 SEN_RE_
Analyzer E4443A Agilent E4443A 18-Oct-2017 MY45300803 Pre-Amp: LN1000 Amplifier Research LN1000 12-Dec-2013 13993 AMF-4D- 01001800-34- 010018000-34- 010018000-34- 010018000-34- 010018000-34- 010018000-34- 010018000-34- 010018000-34- 0		55022:2010/CISPR 22Ed6:20	08 Class B	Model Number	Calibration Due	Serial Number
AMF-4D- 01001800-34- 10P-GS 29-May-2014 1260489 126048	Analyzer:					
Pre-Amp2: HF-Preamp MiteQ 01001800-34-10P-GS 29-May-2014 1260489 Antenna: Lab Chase Chase CBL 6112A 31-Mar-2014 2203 Antenna2: Horn ETS Lindgren 3117 7-May-2015 S009842 Pre-Selector N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A Description		LN1000	Amplifier Research	LN1000	12-Dec-2013	13993
Antenna2: Horn ETS Lindgren 3117 7-May-2015 S009842 Pre-Selector N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01 Description Site Source Site Sour	Pre-Amp2:	HF-Preamp	MiteQ	01001800-34-	29-May-2014	1260489
Pre-Selector N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01 Description Description N/A	Antenna:	Lab Chase	Chase	CBL 6112A	31-Mar-2014	2203
Site Source EMISS01 EMI N/A N/A N/A SS01 Description	Antenna2:	Horn	ETS Lindgren	3117	7-May-2015	S009842
Description	Pre-Selector	N/A	N/A	N/A	N/A	N/A
	Site Source	EMISS01	EMI	N/A	N/A	SS01

COMMENTS

RADIATED EMISSIONS DATA SHEET

Revision 08 2/10/2012

SIGNATURE


Customer:	Sensoray	Job Reference#:	SEN20130412			
Contact:	Alexander (Sasha) Kostromitin	4/18/2013				
	Model 826 PCI Express Analog	lodel 826 PCI Express Analog				
DUT:	and Digital I/O Board	Temperature:	71°F			
Serial Number:	519698 Humidity: 30%					
Voltage/Freq:	120 V 60 Hz Barometric Pressure: 29 inHg					
	Ryan Benitez Location: Hillsboro					
Product Standards:	EN55022:2010/CISPR 22Ed6:2008 Class B					
	FCC Part 15 Subpart B Class B	FCC Part 15 Subpart B Class B				
Test Standard:	CISPR 22 B					

EST RESULTS				Distance		RU	N #
'ass	—— Hor	zontal Peak	Vertic	3m	QP Limit	Line	
60							
50							
₹ 30 M	Maria Labora		L.II. Au	الممال		الممدة المساء	Marie Land
20	. A section		Application in				
0							
0.000001 100	200 300	400	500 MHz	600	700	800	900

0.00	Peak	Data				Final Data		
Freq (MHz)	Amplitude (dBμV)	Limit (dBµV)	Margin (dB) / Orientation	Freq (MHz)	Peak (dBμV)	QP (dBμV)	Limit (dBμV)	Margin (dB) / Orientation
97.124	38.012	40.46	2.448	34.921	41.202	35.552	40.46	4.908
98.676	35,811	40.46	4.649	98.685	36,553	32.233	40.46	8.227
101.198	37.53	40.46	2.93	101.16	37.118	28.818	40,46	11.642
101.78	39.646	40.46	0.814					
101.974	39.285	40.46	1,175	114,645	44.943	39.413	40.46	1.047
107.406	34.931	40.46	5.529	116.036	39.612	30.932	40.46	9.528
114.584	41.357	40.46	-0.897	466.395	33.687	16.147	40.46	24,313
115.942	38.984	40.46	1.476					
121.374	38.553	40.46	1.907					
466.5	47.73	47.46	-0.27					

Radiated Emissions Photographs

Conducted Emissions Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed on a non-conducting tabletop 80 cm tall. Each device is placed on the tabletop 10 cm from its neighboring device. The excess cable length was draped off of the rear of the table. If the excess cable fell closer than 40 cm from the ground plane, the cable were bundled in non-inductive bundles of 30-40 cm loops (when possible) to maintain 40 cm in height. The measurement LISN was located on the floor at least 80 cm from the nearest approach of the DUT.

The DUT and the AE were operated in the modes specified by the client while the emissions were measured.

To measure the emissions at the frequency range specified in this report, cables were arranged in a manner to maximize emissions and a preliminary peak scan was performed. Any emissions that were found to be within 6 dB of the average limit were remeasured with the average detector. Any peaks found to be within 6 dB of the QP limit were remeasured using the QP detector. If there were no peaks found to be within 6 dB of the average limit, then the measurement was considered complete, and the data recorded was peak data as compared to the average limit.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz
Frequency Range Tested	150 kHz to 80 MHz

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic emission limits as specified by EN55022: 2010 / CISPR 22 Ed.6: 2008 Class B Information technology equipment – Radio disturbance characteristics - Limits and Methods of Measurements to support compliance to the European Union EMC Directive 2004/108/EC, FCC Part 15 Subpart B Class B, and other regulations based on this standard.

The conducted emissions test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed. The testing was performed at a facility which meets the requirements set forth by ANSI C63.4, including but not limited to mains impedance and cable bundling. The emissions reported were maximized through cable maximization.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Conducted Emissions Results

Test Standard: EN55022: 2010 / CISPR 22 Ed.6: 2008 Class B

RF Reading from Spectrum Analyzer $(dBuV) + Cable\ Loss\ Factor\ (dB) + LISN\ Factor\ (dB) = Final\ Conducted\ Emission\ Level\ (dBuV).$

Auxiliary Equipment in measurement area

Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement area. Emissions from this equipment could increase the emissions measured.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement area. Emissions from this equipment will not increase the emissions measured.

Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Measurement Bandwidths

Frequency (MHz)	Peak (kHz)	Quasi-Peak (kHz)	Average (kHz)
0.15 - 30	9.0	9.0	9.0
30 – 1000	120	120	120
>1000	1000	N/A	1000

Conducted Emission Plots

Description SEN20130412 Temperature (°F) 70 Device Under Test (DUT) and Digital I/O Board 519698 Serial Number 519698 Serial Number 519698 Serial Number 519698 Test Operator 7197 Test Operator 7197	_	Elec	ctroMagnetic I Conducted Emis Revi		Sheet	Model 826 PCI Express Analog
Test: Standard: EN55022:2010/CISPR 22Ed6:2008 Class B Test Equipment Manufacturer Model Number Calibration Due Serial Number Analyzer: 8566 Hewlett Packard (Agilent) 85650A 20-Feb-2018 2637A04105 Pre-Selector 2706 Tektronix 2706 15-Jun-2015 B010476 LISN 1 Main FCC 50-4-02 19-Apr-2015 6105 LISN 2 N/A N/A N/A N/A N/A LISN 2 N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01	Test Date: 18-/ Location: Hills	Apr-2013 sboro	Relative Humidity (%): 30	Serial Number: Test Filename:	and Digital I/O Board 519698 SEN_CE_
Analyzer: 8566 Hewlett Packard (Agilent) 85650A 20-Feb-2018 2637A04105 Pre-Selector 2706 Tektronix 2706 15-Jun-2015 B010476 LISN 1 Main FCC 50-4-02 19-Apr-2015 6105 LISN 2 N/A N/A N/A N/A N/A N/A TLISN N/A N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A SS01						
Pre-Selector 2706 Tektronix 2706 15-Jun-2015 B010476 LISN 1 Main FCC 50-4-02 19-Apr-2015 6105 LISN 2 N/A N/A N/A N/A N/A TLISN N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01		Test Equipment	Manufacturer	Model Number	Calibration Due	Serial Number
Pre-Selector 2706 Tektronix 2706 15-Jun-2015 B010476 LISN 1 Main FCC 50-4-02 19-Apr-2015 6105 LISN 2 N/A N/A N/A N/A N/A TLISN N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01	Analyzer:	8566	Hewlett Packard (Agilent)	85650A	20-Feb-2018	
LISN 1 Main FCC 50-4-02 19-Apr-2015 6105 LISN 2 N/A N/A N/A N/A N/A N/A TLISN N/A N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A SS01						
LISN 2 N/A N/A N/A N/A N/A TLISN N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01		1757/17676		FCC-LISN-50-		
TLISN N/A N/A N/A N/A N/A Site Source EMISS01 EMI N/A N/A N/A SS01 Description	LISN 1	Main	FCC	50-4-02	19-Apr-2015	6105
Site Source EMISS01 EMI N/A N/A SS01 Description	LISN 2	N/A	N/A	N/A	N/A	N/A
Description	TLISN	N/A	N/A	N/A	N/A	N/A
	Site Source	EMISS01	EMI	N/A	N/A	SS01
	Deviations fro	m Standard: None				

Revision 08

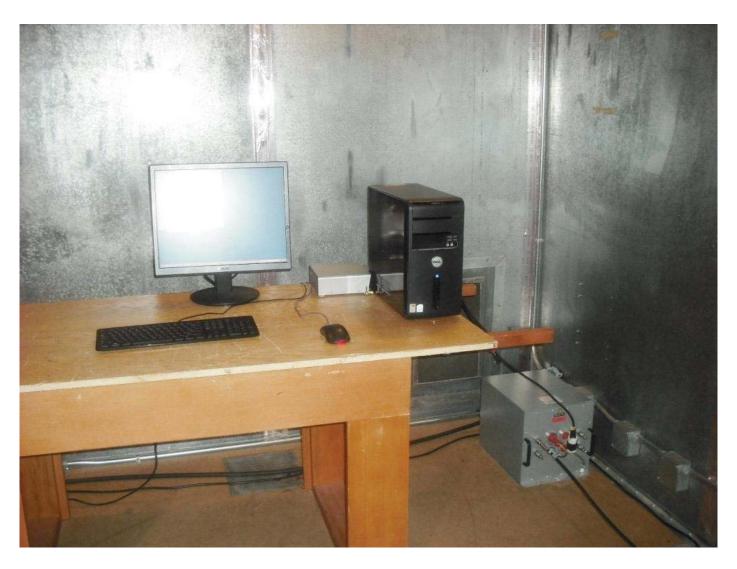
			011200		VIISSIUI				2/10/2012
	10	Customer:				Job R	eference#:	SEN20130	412
			Alexander				Date:	4/18/2013	
			Model 826	PCI Expres	ss Analog				
		DUT:	and Digital	I/O Board		Ter	mperature:	70°F	
	Serial Number: 519698						Humidity:		
	Vo	Itage/Freq:	230 V 50 H	lz		Barometric	Pressure:	29.9 inHg	
		Tested by:						Hillsboro	
Proc					R 22Ed6:20	08 Class B			
			N/A						
	Test	Standard:		В					
TEST				LCL Adapt	ter	LINE		RUN#	
Pass				N/A		Line			1
			A1 2500000 0			190 (190 190	200000	1	
		_	Average Limit	QP Limit	Peak D	ata —— Ave	erage Data	x QP Data	
	70 ¬								
	10								
	60							_	
						-			
	50 -	1			_			-	-
		\ \				_			
>	40	\n\/	Λ .						
dBuV	30	'//				1110 1164			
3,575	-	- 1	4/1 /1 . 11	La Late Harton		A PARTY NAMED IN	Addition, he was	M	
	20	√V	VVVV	AA WAXWA		A STATE OF THE PARTY OF THE PAR	I La Land	•	
		V	100000	JOGU MEMBERS	THE RESERVE TO SERVE THE PARTY OF THE PARTY			-	
1	40								
	10 -								
	10 -								
	70,900 U	000		1000000		10000	000	1	00000000
	0	000		1000000	Hz	10000	000	1	00000000
	0	000		1000000	Hz	10000	000	1	00000000
COM	100			1000000	Hz	10000			
COM	100			1000000	Hz	10000		SIGNATURI	
COM	100			1000000	Hz	10000			
	0 - 100	TS	0 Hz:	1000000	Hz	10000			
	0 + 100 MEN		0 Hz;		1941871				
CISPF	0 1000 MEN	TS 230 VAC; 5 Peak Data		A	verage Dat	a	Ryan	Benity QP Data	Ξ
CISPF	0	230 VAC; 5 Peak Data Amplitude	Margin	A Freq	verage Dat Amplitude	a Margin	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH	0 1000 MEN R B- 2 eq Hz)	230 VAC; 5 Peak Data Amplitude (dBµV)	Margin (dB)	Freq (MHz)	verage Dat Amplitude (dBμV)	a Margin (dB)	Ryan	Benity QP Data	Ξ
CISPF Fre (MH	0 1000 MEN R B- 2 eq Hz) 0.15	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19	Margin (dB) 16.81	Freq (MHz) 0.2013	Amplitude (dBµV) 35.92	a Margin (dB) 17.636747	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH	0 1000 MIDN R B- 2 eq Hz) 0.15 0.207	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528	Margin (dB) 16.81 15.796827	Freq (MHz) 0.2013 0.20415	verage Dat Amplitude (dBµV) 35.92 39.12	a Margin (dB) 17.636747 14.319978	Ryan Freq	Benity QP Data Amplitude	Margin
Fre (MH	0 + 1000 MIDN R B- 2 eq Hz) 0.15 0.207 2754	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316	Margin (dB) 16.81 15.796827 21.637463	Freq (MHz) 0.2013 0.20415 0.207	verage Dat Amplitude (dBµV) 35.92 39.12 39.928	a Margin (dB) 17.636747 14.319978 13.396827	Ryan Freq	Benity QP Data Amplitude	Margin
Fre (MH 0 0	0 + 1000 MIDN R B- 2 eq Hz) 0.15 0.207 2754 3438	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466	Margin (dB) 16.81 15.796827 21.637463 23.644934	Freq (MHz) 0.2013 0.20415 0.207 0.20985	verage Dat Amplitude (dBµV) 35.92 39.12 39.928 38.528	a Margin (dB) 17.636747 14.319978 13.396827 14.683252	Ryan Freq	Benity QP Data Amplitude	Margin
Fre (MH 0 0	0 + 1000 MIDN R B- 2 eq Hz) 0.15 0.207 2754	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316	Margin (dB) 16.81 15.796827 21.637463	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127	verage Dat Amplitude (dBµV) 35.92 39.12 39.928 38.528 32.32	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 00 0 0	0 1000 MIDN RR B- 22 0.15 0.207 2754 3438 4122	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852	A Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255	verage Dat Amplitude (dBµV) 35.92 39.12 39.928 38.528 32.32 31.914	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0 0 0 0 0.5	0 1000 MIDN RR B- 2 0.15 0.207 2754 3438 4122	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0 0 0 0 0.5. 0.0.	0 + 1000 MISN RR B- 2 2 eq - 0.15 - 0.207 - 2754 - 3438 - 44615 - 6117	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0 0.0.0 0.0 0.5 0.5 0.0 0.1	0 + 1000 MISN RR B- 2 2 eq - 0.15 - 0.207 - 2754 - 3438 - 44615 - 6858	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904	A Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0 0.3 0.4 0.5 0.5 0.6 0.8	0 + 1000 MISN RR B- 22 Quality 0.15 0.207 2754 3438 44122 4615 6117 6858 1975	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096 26.93	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904 29.07	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095 0.3438	verage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149 29.554	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074 19.556934	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 4 1000 MISN RR B- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096 26.93 26.999	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904 29.07	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095 0.3438 0.34665	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149 29.554 27.957	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074 19.556934 21.085365	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 + 1000 MISN RR B- 22 Quality 0.15 0.207 2754 3438 44122 4615 6117 6858 1975	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096 26.93	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904 29.07	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095 0.3438 0.34665 0.4122	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149 29.554 27.957 25.847	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074 19.556934 21.085365 21.756852	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0 4 1000 MISN RR B- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096 26.93 26.999	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904 29.07	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095 0.3438 0.34665 0.4122 0.6117	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149 29.554 27.957 25.847 24.098	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074 19.556934 21.085365 21.756852 21.902	Ryan Freq	Benity QP Data Amplitude	Margin
CISPF Fre (MH 0 0.3 0.5 0.6 0.8 0.9 1.0	0 4 1000 MISN RR B- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	230 VAC; 5 Peak Data Amplitude (dBµV) 49.19 47.528 39.316 35.466 31.573 28.156 30.422 28.096 26.93 26.999	Margin (dB) 16.81 15.796827 21.637463 23.644934 26.030852 27.844 25.578 27.904 29.07	Freq (MHz) 0.2013 0.20415 0.207 0.20985 0.2127 0.27255 0.2754 0.27825 0.34095 0.3438 0.34665 0.4122	xverage Dat Amplitude (dBμV) 35.92 39.12 39.928 38.528 32.32 31.914 32.316 30.515 29.149 29.554 27.957 25.847 24.098	a Margin (dB) 17.636747 14.319978 13.396827 14.683252 20.779208 19.125865 18.637463 20.352951 20.031074 19.556934 21.085365 21.756852	Ryan Freq	Benity QP Data Amplitude	Margin

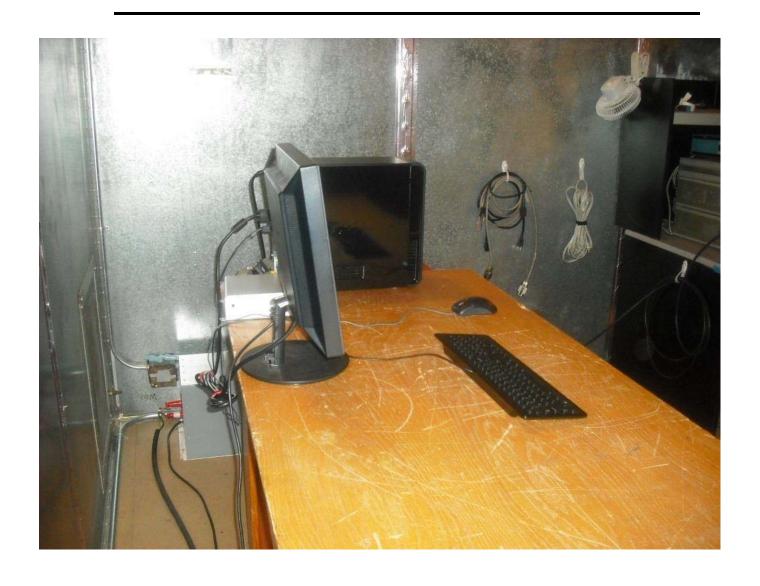
Revision 08 2/10/2012

	Customer:	Sensoray			Joh Re	eference#	SEN201304	112
			(Sasha) Ko	stromitin	00011		4/18/2013	
		200	PCI Expres					
		and Digital		ss Allalog	Tor	mperature:	70°E	
Cori	al Number:		I/O Board		1 61	Humidity:		
	Itage/Freq:		1		Barometric			
					barometric		Hillsboro	
	Tested by:			R 22Ed6:20	OR Class B	Location.	Піїврого	
Floudel	Stariuarus.	N/A	010/CISFF	\ ZZEU0.ZU	Jo Class B			
Toet	t Standard:	0.0000000	D.					
TEST RES			LCL Adapt	tor	LINE		RUN#	
Pass	OLIS		N/A	l GI	Neutral		RON#	
1 033			IN/A		INCULIAL			
		Average Limit	QP Limit	Peak Da	ata —— Ave	rage Data	× QP Data	
70	100							
60								
00								
50							_	
9000	۸				_			
> 40	2. (٨						
Angp 30	1 1 1	A						
♥ 30	74	11 11 11	10 ledel	I II hallby chase	المالية		la la	
- 50			1.40 8 8 8 8		The second second	part and		
	Λ / Π							
20 -	NB	Why was	AA MAMILIA	A STATE OF	Additional Assessment			
	NA	1 Phylodelle	Ada Nakali					
20 - 10 -	NA	1 KV IN ANDA	AJA's ANTHION		A Commission of the Commission			
20 - 10 - 0 -	NA		AJAY ARTARIYS		(US)			
20 - 10 - 0 -	000	1 46 10 4,10 2.1	1000000		10000	000	1	00000000
20 - 10 - 0 -	000		1000000	Hz	100000	000	1	00000000
20 - 10 - 0 - 100			1000000	Hz	100000			
20 - 10 - 0 - 100			1000000	Hz	100000		SIGNATURE	
20 - 10 - 0 - 100			1000000	Hz	100000	√	SIGNATURE	
20 10 0 100 COMMEN	TS		1000000	Hz	100000	√	SIGNATURE	
20 10 100 COMMEN	TS 230 VAC; 5	O Hz;	1000000	Hz	100000	√	Benity	
20 10 100 COMMEN	TS 230 VAC; 5 Peak Data			verage Dat	a	Ryan	Benity QP Data	
20 10 100 COMMEN	TS 230 VAC; 5	0 Hz;				√	Benity	
20 10 100 COMMEN	TS 230 VAC; 5 Peak Data		А	verage Dat	a	Ryan	Benity QP Data	
20 10 100 COMMEN CISPR B- 2	TS 230 VAC; 5 Peak Data Amplitude	Margin	A Freq	verage Dat	a Margin (dB)	Ryan	Benity QP Data Amplitude	Margin
20 10 100 COMMEN CISPR B- 2 Freq (MHz)	230 VAC; 5 Peak Data Amplitude (dBμV) 40.597	Margin (dB)	Freq (MHz)	Amplitude (dBμV) 31.328	a Margin (dB)	Ryan	Benity QP Data Amplitude	Margin
20 10 100 COMMEN CISPR B- 2 Freq (MHz) 0.15285 0.20985	230 VAC; 5 Peak Data Amplitude (dBμV) 40.597 45.738	Margin (dB) 25.24667 17.473252	Freq (MHz) 0.19845	Amplitude (dBµV) 31.328 35.94	a Margin (dB) 22.347181	Ryan	Benity QP Data Amplitude	Margin
20 10 100 COMMEN CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825	230 VAC; 5 Peak Data Amplitude (dBμV) 40.597 45.738 39.325	Margin (dB) 25.24667 17.473252 21.542951	Freq (MHz) 0.19845 0.2013 0.20415	Amplitude (dBµV) 31.328 35.94 38.736	a Margin (dB) 22.347181 17.616747 14.703978	Ryan	Benity QP Data Amplitude	Margin
20 100 100 100 100 COMMIEN CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886	Margin (dB) 25.24667 17.473252 21.542951 25.224934	Freq (MHz) 0.19845 0.2013 0.20415	Amplitude (dBµV) 31.328 35.94 38.736 38.938	a Margin (dB) 22.347181 17.616747 14.703978 14.386827	Ryan	Benity QP Data Amplitude	Margin
20 10 100 COMMEN CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825	230 VAC; 5 Peak Data Amplitude (dBμV) 40.597 45.738 39.325	Margin (dB) 25.24667 17.473252 21.542951 25.224934	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738	Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252	Ryan	Benity QP Data Amplitude	Margin
20 10 100 COMMEN CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175	Ryan	Benity QP Data Amplitude	Margin
20 100 100 100 100 100 100 CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865	Ryan	Benity QP Data Amplitude	Margin
COMMEN CISPR B- 2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.057	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724	Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.057 28.389	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891 0.9138	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611 27.606	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.057 28.389 28.394	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754 0.27825 0.34095	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725 27.769	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951 21.411074	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891 0.9138 1.0962	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611 27.606 28.32	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.057 28.389 28.394 27.68	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754 0.27825 0.34095 0.3438	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725 27.769 27.774	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951 21.411074 21.336934	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891 0.9138 1.0962 1.36695	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611 27.606 28.32 28.353	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.357 28.389 28.394 27.68 27.647	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754 0.27825 0.34095 0.3438 0.40935	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725 27.769 27.774 24.948	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951 21.411074 21.336934 22.713479	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891 0.9138 1.0962 1.36695 1.64055	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611 27.606 28.32 28.353 27.96	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.365 28.394 27.68 27.647 28.04	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754 0.27825 0.34095 0.3438	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725 27.769 27.774 24.948	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951 21.411074 21.336934 22.713479	Ryan	Benity QP Data Amplitude	Margin
COMMIEN CISPR B-2 Freq (MHz) 0.15285 0.20985 0.27825 0.3438 0.4122 0.62025 0.8226 0.891 0.9138 1.0962 1.36695	230 VAC; 5 Peak Data Amplitude (dBµV) 40.597 45.738 39.325 33.886 30.783 27.635 27.943 27.611 27.606 28.32 28.353 27.96	Margin (dB) 25.24667 17.473252 21.542951 25.224934 26.820852 28.365 28.357 28.389 28.394 27.68 27.647	Freq (MHz) 0.19845 0.2013 0.20415 0.207 0.20985 0.2697 0.27255 0.2754 0.27825 0.34095 0.3438 0.40935	Amplitude (dBµV) 31.328 35.94 38.736 38.938 36.738 29.53 31.726 31.724 28.725 27.769 27.774 24.948 24.857	a Margin (dB) 22.347181 17.616747 14.703978 14.386827 16.473252 21.597175 19.313865 19.229463 22.142951 21.411074 21.336934 22.713479	Ryan	Benity QP Data Amplitude	Margin

Revision 08 2/10/2012

Customer:	Sensoray	Job Reference#:	SEN20130412
Contact:	Alexander (Sasha) Kostromitin	Date:	4/18/2013
DUT:	Model 826 PCI Express Analog and Digital I/O Board	Temperature:	70°F
Serial Number:	519698	Humidity:	30%
Voltage/Freq:	120 V 60 Hz	Barometric Pressure:	
Tested by:	Ryan Benitez	Location:	Hillsboro
Product Standards:	FCC Part 15 Subpart B Class B		
	N/A		
Test Standard:	CISPR 22 B		


TEST RESULTS	LCL Adapter	LINE	RUN#	
Pass	N/A	Line		
	age Limit ——— QP Limit ———	- Peak Data —— Average Da	ta x QP Data	
70				
60				
50				
≥ 40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\				
₹ 40 W M		444		
20	Control of the state of the sta			
	A GARANTATIVITATION	CALLA SE MINISTER		
10				
100000	1000000	10000000	100	000000
		Hz		


COMMEN	rs						SIGNATURI	<u>C</u>
CISPR B- 1	20 VAC; 60) Hz;				Ryan	Benitey	
	Peak Data		A	verage Data	а		QP Data	
Freq	Amplitude	Margin	Freq	Amplitude	Margin	Freq	Amplitude	Margin
(MHz)	(dBµV)	(dB)	(MHz)	(dBµV)	(dB)	(MHz)	(dBµV)	(dB)
0.15285	42.587	23.25667	0.19845	35.124	18.551181			
0.20985	46.728	16.483252	0.2013	39.12	14.436747			
0.24975	36.72	25.045476	0.20415	41.12	12.319978			
0.2754	38.316	22.637463	0.207	41.128	12.196827			
0.3438	34.466	24.644934	0.20985	37.728	15.483252			
0.4122	31.173	26.430852	0.2697	30.717	20.410175			
			0.27255	32.314	18.725865			
0.549	27.559	28.441	0.2754	32.316	18.637463			
0.61455	30.225	25.775	0.3381	27.738	21.511794			
0.6858	28.296	27.704	0.34095	28.949	20.231074			
0.891	26.999	29.001	0.3438	28.754	20.356934			
1.0905	25.701	30.299	0.40935	26.238	21.423479			
1.1589	26.559	29.441	0.4122	25.447	22.156852			
1.3641	25.746	30.254	0.6117	24.398	21.602			
1.4325	26.741	29.259	0.61455	24.395	21.605			

Revision 08 2/10/2012

		-						2/10/2012
	Customer:				Job R		SEN20130	412
	Contact:	Alexander	(Sasha) Ko	stromitin		Date:	4/18/2013	
		Model 826	PCI Expres	ss Analog				
	DUT:	and Digital			Ter	mperature:	70°F	
S	erial Number:		0 _ 0010			Humidity:		
	Voltage/Freq:		l ₇		Barometric			
		Ryan Benit			Darometric		Hillsboro	
Decelo				D Class D		Location.	Піїзрого	
Produ	ct Standards:		5 Subpart	D Class D				
		N/A						
	est Standard:	CISPR 22						
	ESULTS		LCL Adap		LINE		RUN#	
Pass			N/A		Neutral			1
		Average Limit	QP Limit	Deel D		Data	× QP Data	
		Average Limit	QP Limit	Peak D	ata Ave	erage Data	× QP Data	
7	0							
6	0						_	
***************************************					_			
5	0						-	
594								
≥ 4	0							
ABBu 3		14						
0 3	" "VI	1011	. The of his	فعم والمرازات أريا	Salarata India (1986)	State Market	tel.	
2	0 \ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	VILLA	1.101.11111			-		
	- V	. ALL MINITUR	PS CONTINUE	William	bust			
1	0		land and					
100	0 —							
	100000		1000000		10000	000		100000000
				Hz				
COMMI	ENTS					5	SIGNATURI	E
						1	V-02	
						Kruan	Benity	
CISPR E	3- 120 VAC; 6	0 Hz:				109	Canag	
	Peak Data		Δ	verage Dat	a		QP Data	
Freq	Amplitude		Freq	Amplitude	Margin	Freq	Amplitude	Margin
(MHz)		(dB)	(MHz)	(dBµV)	(dB)	(MHz)	(dBµV)	(dB)
0.152			0.19845			(IVITIZ)	(авил)	(ub)
0.132								
		18.673252	0.2013					
0.249		25.435476	0.20415		14.903978			
0.2769		23.976638	0.207		14.786827			
0.34			0.20985					
0.41	22 30,383	27.220852	0.2697	30.13				
			0.27255	31.726	19.313865			
0.614	55 28.429	27.571	0.2754		19.429463			
0.888			0.3381		22.291794			
1.15		28.231	0.34095		21.011074			
1.36			0.3438	200000000000000000000000000000000000000	21.336934	-		
		27.645	0.40935					
1.634								
1.90			0.8853		22.465			
2.17			1.3584		22.222			
2.655	15 27.42	28.58	1.36125	24.281	21.719			

Conducted Emissions Photographs

Power Line Harmonics and Voltage Fluctuations Information

The test measures to amount of fluctuation and flicker on an AC mains caused by the Device Under Test. This test is applicable to all electrical and electronic equipment that has an input current not exceeding 16A per phase and is designed to be placed on a low voltage (between 220 V and 250 V) AC mains distribution network.

The supply voltage was voltage specified rated voltage of the DUT. If a range was specified for the DUT, the voltage was 230 V for a single phase system.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic emission limits as specified by EN61000-3-2:+A1:2009+A2:2009, limits for harmonic current emissions (equipment input current \leq 16 A per phase) and EN61000-3-3:2008, limitation of voltage fluctuations and flicker in low-voltage supply systems for equipment rated \leq 16 A to support compliance to the European Union EMC Directive 2004/108/EC.

The emissions test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Power Line Harmonics and Voltage Fluctuation Results

Test Standard: EN61000-3-2:2006+A1:2009+A2:2009 Class A

Emissions: Emissions are within specification limits.

Test Standard: EN61000-3-3:2008 Class A

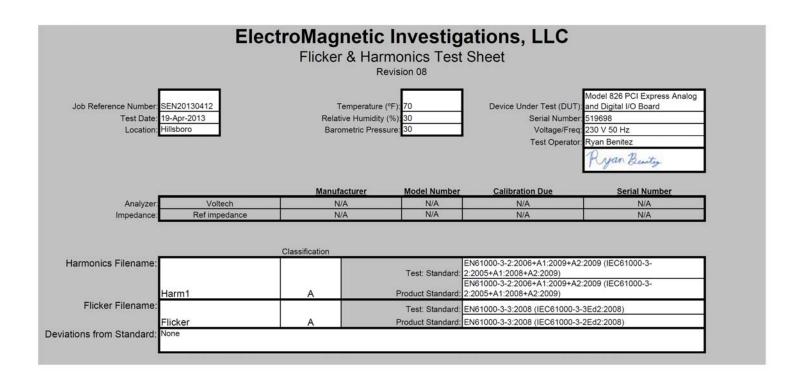
Emissions: Emissions are within specification limits.

Auxiliary Equipment in measurement area

Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement area. Emissions from this equipment could increase the emissions measured.

Auxiliary Equipment outside measurement area


Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement area. Emissions from this equipment will not increase the emissions measured.

Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Power Line Harmonics and Voltage Fluctuation Data Sheet

Product: Serial no:	826 Board	Apr 22 201 Page 1 of 1	
Description:		rage 101	
Test Date:	Apr 22 2013 9:03am		
Result Name:	SENS		
Type of Test:	Fluctuating Harmonics Test		
Limits:	Class A		
Power Analyzer:	Voltech PM6000 SN: 100006700076 Fire	mware version: v1.22.07R	C5
	Channel(s):	ON 000045500470 00 Adi D	- 04 00T 0040
	1. SN: 090015501444, 28 Adjusted Date: 30 OCT 2012. 2.		e: 31 OCT 2012.
	SN: 090015500067, 28 Adjusted Date: 31 OCT 2012. 4. SN:None Adjusted Date:None 6. SN:None Adjusted Date: None Adjuste	Control of the Contro	
	Shunt(s):	vale. Hone	
	1. SN: 091024300282, 4 Adjusted Date: 31 OCT 2012. 2. S	N: 091024300284, 4 Adjusted Date: 3	1 OCT 2012.
	3. SN: 091024300289, 4 Adjusted Date: 31 OCT 2012. 4. S	AND THE PROPERTY OF THE PROPER	
	5. SN:None Adjusted Date:None 6. SN:None Adjusted D	ate:None	
AC Source:	Mains / Manual Source		
Test Parameter D	7.777.7	Jser Entered	Measured
Operating Frequer		60	49.9840
Operating Voltage:	1.0	230	229.5792
Specified Power:		0.0000	49.3756
Fundamental Curro Power Factor:	7.00	0.0000	0.2187 0.4815
Average Input Curi			0.4478
Maximum POHC:			0.0352
POHC Limit:			0.2514
Maximum THC:			0.3970
Minimum Power:		75	
Class Multiplier:		.0000	
Test Duration:	0	0:02:30	

Product:	826 Board		Apr 22 2013 9:09am		
Serial no:			Page 1 of 1		
Description:			8.85%		
Result Name:	SENS				
Voltech IEC61000-	3 Windows Software 1.14.06RC1	Test Date:	Apr 22 2013 9:03am		
Type of Test:	Fluctuating Harmonics Test - Worst Case Table (2006)	(4)		
Power Analyzer:	Voltech PM6000 SN: 100006700076 Firmware version: v1.22.07RC5				
	1. SN: 090015501444, 28 Adjusted Date: 30 OCT 2012. 2. SN: 0900	015500178, 28 Adju	sted Date: 31 OCT 2012.		
	3. SN: 090015500067, 28 Adjusted Date: 31 OCT 2012. 4. SN:None	Adjusted Date:No	one		
	5. SN:None Adjusted Date:None 6. SN:None Adjusted Date:Non	e			
	Shunt(s):				
	1. SN: 091024300282, 4 Adjusted Date: 31 OCT 2012. 2. SN: 091024300284, 4 Adjusted Date: 31 OCT 2012.				
	3. SN: 091024300289, 4 Adjusted Date: 31 OCT 2012. 4. SN:None Adjusted Date:None				
	5. SN:None Adjusted Date:None 6. SN:None Adjusted Date:None	•			
AC Source:	Mains / Manual Source				
Overall Result:	Notes:				
PASS					

Class	Class A
Class Multiplier	1

Harm	Limit 1	Limit 2	Average Reading	≪L1	<l2< th=""><th>Max Reading</th><th><l2< th=""><th>Pass FAIL</th><th>Harm</th><th>Limit 1</th><th>Limit 2</th><th>Average Reading</th><th><l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass</th></l2<></th></l1></th></l2<></th></l2<>	Max Reading	<l2< th=""><th>Pass FAIL</th><th>Harm</th><th>Limit 1</th><th>Limit 2</th><th>Average Reading</th><th><l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass</th></l2<></th></l1></th></l2<>	Pass FAIL	Harm	Limit 1	Limit 2	Average Reading	<l1 <l2<="" th=""><th>Max Reading</th><th><l2< th=""><th>Pass</th></l2<></th></l1>	Max Reading	<l2< th=""><th>Pass</th></l2<>	Pass
2	1.0800A	1.6200A	6.975mA	/	/	7.265mA	/	N/A	3	2.3000A	3.4500A	206.5mA	< <	207.1mA	/	N/A
4	430.0mA	645.0mA	6.035mA	/	/	6.317mA	/	N/A	5	1.1400A	1.7100A	190.2mA	/ /	191.3mA	/	N/A
6	300.0mA	450.0mA	4.856mA	1	/	5.134mA	/	N/A	7	770.0mA	1.1550A	168.1mA	11	170.0mA	/	N/A
8	230.0mA	345.0mA	3,523mA	1	/	3.774mA	/	N/A	9	400.0mA	600.0mA	141.5mA	11	144.5mA	/	N/A
10	184.0mA	276.0mA	2,368mA	/	/	2.569mA	1	N/A	11	330.0mA	495.0mA	112,6mA	11	116.6mA	/	N/A
12	153.3mA	230.0mA	1.857mA	/	/	2.043mA	1	N/A	13	210.0mA	315.0mA	83.50mA	11	88.29mA	/	N/A
14	131.4mA	197.1mA	2.382mA	/	/	2.691mA	/	N/A	15	150.0mA	225.0mA	56.52mA	11	61.78mA	/	N/A
16	115.0mA	172.5mA	3.173mA	1	/	3.525mA	/	N/A	17	132.3mA	198.5mA	33.24mA	11	38.41mA	/	N/A
18	102.2mA	153.3mA	3.912mA	1	/	4.244mA	1	N/A	19	118.4mA	177.6mA	16.93mA	11	20.19mA	/	N/A
20	92.00mA	138.0mA	4.089mA	/	1	4.332mA	/	N/A	21	107.1mA	160.7mA	11.83mA	11	12.92mA	/	N/A
22	83.63mA	125.4mA	3.342mA	1	1	3.604mA	/	N/A	23	97.82mA	146.7mA	12.30mA	11	13.05mA	/	N/A
24	76.66mA	115.0mA	3.394mA	1	/	3.574mA	1	N/A	25	90.00mA	135.0mA	16.31mA	1 1	17.32mA	/	N/A
26	70.76mA	106.1mA	2.640mA	1	/	2.881mA	1	N/A	27	83.33mA	125.0mA	14.51mA	11	15.19mA	/	N/A
28	65.71mA	98.57mA	1.709mA	1	/	1.889mA	/	N/A	29	77.58mA	116.3mA	10.87mA	11	11.51mA	/	N/A
30	61.33mA	92.00mA	1.461mA	/	/	1.612mA	/	N/A	31	72.58mA	108.8mA	6.161mA	11	7.133mA	/	N/A
32	57.50mA	86.25mA	1.150mA	1	/	1.259mA	1	N/A	33	68.18mA	102.2mA	3.086mA	11	3.849mA	/	N/A
34	54.11mA	81.17mA	1.105mA	/	/	1.330mA	/	N/A	35	64.28mA	96,42mA	5.484mA	11	6.043mA	/	N/A
36	51.11mA	76.66mA	1.354mA	1	/	1,474mA	/	N/A	37	60.81mA	91,21mA	8.190mA	11	8.847mA	1	N/A
38	48.42mA	72.63mA	1.376mA	1	/	1.558mA	/	N/A	39	57.69mA	86.53mA	9.681mA	11	10.27mA	/	N/A
40	46.00mA	69.00mA	1.524mA	./	1	1.755mA	1	N/A								

Product:	826 Board		Apr 22 2013 9:00am			
Serial no:			Page 1 of 1			
Description:						
Result Name:	SENS					
Voltech IEC61000-	-3 Windows Software 1.14.06RC1	Test Date:	Apr 19 2013 5:05pm			
Type of Test:	Flickermeter Test - Table					
Power Analyzer:	Voltech PM6000 SN: 100006700076 Firmware Channel(s):	Version: v1.2	22.07RC5			
	1. SN: 090015501444, 28 Adjusted Date: 30 OCT 2012. 2. SN: 0900	015500178, 28 Adju	sted Date: 31 OCT 2012.			
	3. SN: 090015500067, 28 Adjusted Date: 31 OCT 2012. 4. SN:None	Adjusted Date:No	ne			
	5. SN:None Adjusted Date:None 6. SN:None Adjusted Date:None					
	Shunt(s):					
	1. SN: 091024300282, 4 Adjusted Date: 31 OCT 2012. 2. SN: 09102	24300284, 4 Adjuste	d Date: 31 OCT 2012.			
	3. SN: 091024300289, 4 Adjusted Date: 31 OCT 2012. 4. SN:None	Adjusted Date:None	•			
	5. SN:None Adjusted Date:None 6. SN:None Adjusted Date:None					
AC Source:	Mains / Manual Source					
Overall Result:	Notes:					
PASS						
	Plt					

	FIL			
Limit	0.650			
Reading	0.071			
	Pst	dc (%)	dmax (%)	d(t) > 3.3%(ms)
Limit	1.000	3.300	4.000	500
Reading 1	0.071	0.000	0.000	0
Reading 2	0.071	0.000	0.000	0
Reading 3	0.071	0.000	0.000	0
Reading 4	0.071	0.000	0.000	0
Reading 5	0.071	0.000	0.000	0
Reading 6	0.071	0.000	0.000	0
Reading 7	0.071	0.000	0.000	0
Reading 8	0.071	0.000	0.000	0
Reading 9	0.071	0.000	0.000	0
Reading 10	0.071	0.000	0.000	0
Reading 11	0.071	0.000	0.000	0
Reading 12	0.071	0.000	0.000	0

EMI4019.04	Testing Report	Page 35 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

Power Line Harmonics and Voltage Fluctuation Photographs

Immunity Test Report

ElectroStatic Discharge (ESD) Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

Table-top DUTs and the AE that is designated to be placed in the measurement area were placed on a non-conducting tabletop 80 cm tall with a horizontal coupling plane. The DUT and AE were isolated from the horizontal coupling plane by a thin non-conducting surface 0.5 mm thick. The horizontal coupling plane was attached to the a ground plane on the floor by two 470 Ω resistors. A vertical coupling plane was placed on the table-top for vertical coupling plane tests. The vertical coupling plane was also terminated to the ground plane on the floor by two 470 Ω resistors.

Floor standing DUTs and AE were placed on the ground plane with a 10 cm thick insulator isolating the equipment from the ground plane. The only ground connection allowed was the ground connection that was created by the power connector, or that which would normally be present in the application of the DUT.

The ground plane on the floor extended past the edge of the tabletop or the DUT by at least one half a meter on all sides. The DUT was placed at least 1 meter from all conducting surfaces.

The DUT and the AE were operated in the modes specified by the client while the ESD test was performed. The DUT was subjected to both air and contact discharges. The specific number of discharges at each voltage level is specified within this report. Any contact discharges were applied to all conductive surfaces as specified in the test standard. Any air discharges were applied to non-conducting surfaces as specified in the test standard. If any response was seen within the DUT system, it was noted in the report. The testing was performed with the DUT fully configured with appropriate AE and connecting cables.

All targets tested were recorded along with the type of discharge, the number of discharges, voltage level, polarity, and the reaction of the DUT system.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz
Test Level	4 kV contact discharge, 8 kV air discharge

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity requirements as specified by EN55024:2010 (CISPR 24 Ed2:2010) to support compliance to the European Union EMC Directive 2004/108/EC.

The ESD test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

ElectroStatic Discharge Results

Test Standard: IEC 61000-4-2:2010

Auxiliary Equipment in measurement area

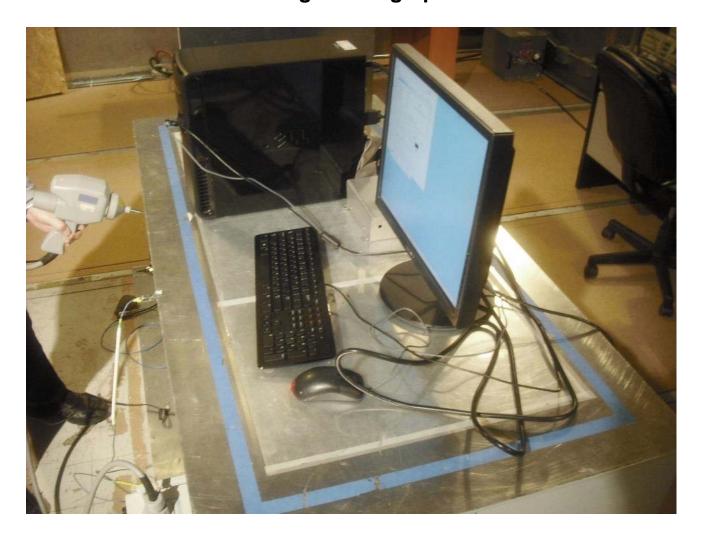
Device	Manufacturer	Model Number	Serial Number
Computer	Dell	Vostro 200	625VGG1
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

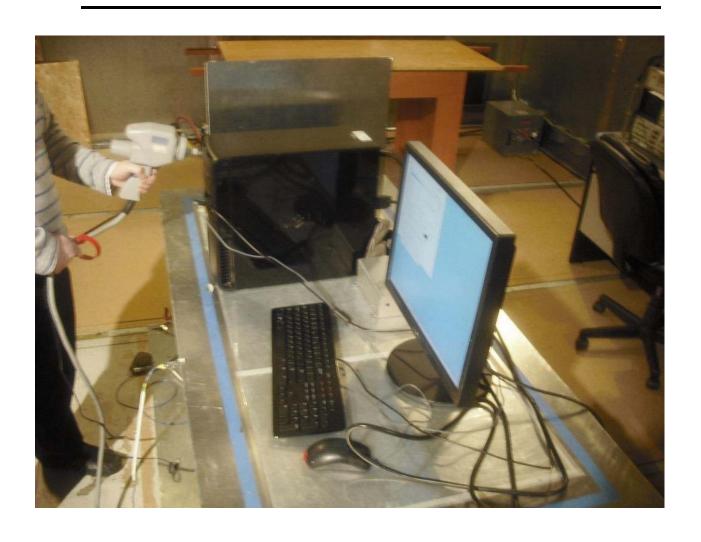
Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.


Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A


ElectroStatic Discharge Data Sheet

Job Reference Number: Test Date: Location:	23-Apr-2013	Elect	Express Analog Board	×					
Product Standard: Test: Standard: ESD Generator	EN55024:2010(C EN61000-4-2:200 ±4kV Contact / ± Performance Cla	08(IEC 61000-4- 8kV Air ss B	2:2008Ed.2) Manut	facturer seken	Model Number ES2002 & TC815R	Calibration Due September 30, 2016	Serial ESS0827941 &	Number	
Test Location	Discharge Type	Voltage Level	Voltage Polarity	Number of Events	1	nts / DUT Response	Stated Criteria	Pass / Fail	Picture
Computer rear panel near 826 I/O Board.	Contact	2 kV	±	10 Each	O. 53 Or 53 O	performance beyond	В	Pass	Yes
Computer rear panel near 826 I/O Board.	Contact	4 kV	±	10 Each	No degradation of manuafacturer sp	f performance beyond ecifications.	В	Pass	
Horizontal Coupling Plane Horizontal Coupling Plane	Contact	2 kV	±	10 Each	No degradation of	performance observed.	В	Pass	
Horizontal Coupling Plane	Contact	4 kV	±	10 Each		performance observed.	В	Pass	
Vertical Coupling Plane	Contact	2 kV	±	10 Each		performance observed.	В	Pass	
Vertical Coupling Plane	Contact	4 kV	±	10 Each	No degradation of	performance observed.	В	Pass	
		6						-	
	- 2							-	
		Č.		-				-	
	7.0	7	,	-	-		+		
	1:	-	· ·	-			-	_	
Deviations fro	om Standard:				1				

ElectroStatic Discharge Photographs

Radiated Immunity Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed on a non-conducting tabletop 80 cm tall. Each device is placed on the tabletop 10 cm from its neighboring device. The excess cable length was draped off of the rear of the table. If the excess cable fell closer than 40 cm from the ground plane, the cable were bundled in non-inductive bundles of 30-40 cm loops (when possible) to maintain 40 cm in height. The transmit antenna was then placed 3 m from the DUT/AE system. Any AE that had to be placed outside the measurement area was setup either outside of the chamber or under the floor, depending on size and convenience.

The DUT and the AE were operated in the modes specified by the client while the susceptibility was measured.

The field was calibrated to a uniform field in a fully anechoic chamber as per the requirements within IEC61000-4-3 using an empty room. The power required to produce this field was recorded for playback when the DUT is placed within the chamber. The uniform field was created over a vertical plane of dimensions 1.5 m by 1.5 m placed 0.8 m above the floor. If the DUT can be completely exposed to the field using a smaller uniform surface, the surface was reduced to meet the appropriate size of the DUT, but the surface would never be smaller than 0.5 m by 0.5 m.

The face of the DUT and it corresponding system was placed at vertical surface used for calibration.

Device Under Test	Model 826	
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board	
Serial Number	519698	
I/O Ports Populated for test	5	
Clock Frequencies (>9kHz)	50 MHz	
Modes of Operation	Sending and receiving analog and digital signals	
Operating System (Version)	Windows	
Exercising Software (version)	826 Test Application S/W	
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz	
Test Level	3 V/m, 80-1000 MHz, 3V/m, 1-2.7 GHz	

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity limits as specified by EN55024:2010 (CISPR 24 Ed2:2010) to support compliance to the European Union EMC Directive 2004/108/EC.

EMI4019.04	Testing Report	Page 45 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

The radiated immunity test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Radiated Immunity Results

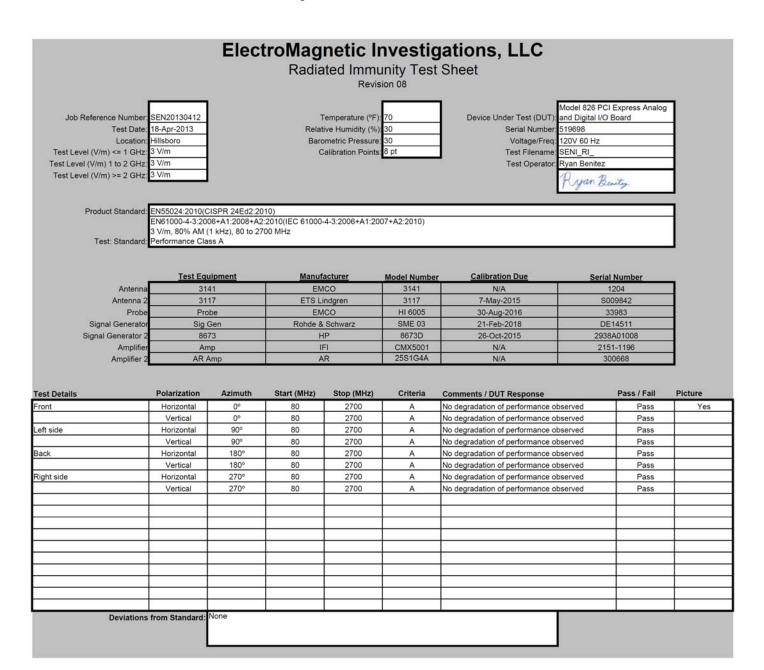
Test Standard: IEC 61000-4-3:2010

Auxiliary Equipment in measurement area

Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

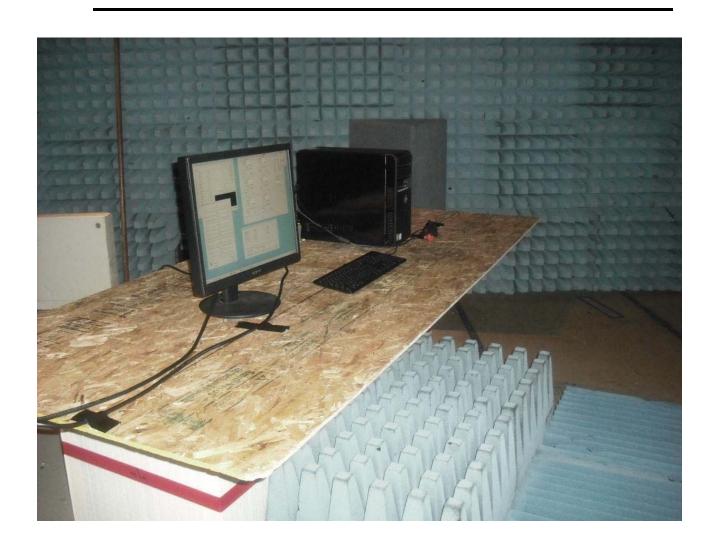
^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

Auxiliary Equipment outside measurement area


Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.

Cables


Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Radiated Immunity Data Sheet

Radiated Immunity Photographs

Electrical Fast Transients (burst) Immunity Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed 10 cm above a conducting surface. Each device is placed on the tabletop 10 cm from its neighboring device. The excess cable length was serpentined (not coiled) on the tabletop 10 cm above the ground plane. The power lines subjected to the transient were plugged directly into the generator. I/O's that were greater than 3 m in length were passed through a capacitive clamp, and also exposed to the transient.

The waveform of the transient can be seen in the following figure.

at 100 kHz



Figure: EFT/Burst Waveform

Burst period 300 ms

The DUT and the AE were operated in the modes specified by the client while the susceptibility was measured.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz
Test Level	1 kV Peak

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity limits as specified by EN55024:2010 (CISPR 24 Ed2:2010) Section 10 to support compliance to the European Union EMC Directive 2004/108/EC.

The electrical fast transient immunity test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Electrical Fast Transient (burst) Immunity Results

Test Standard: IEC 61000-4-4:2010

Auxiliary Equipment in measurement area

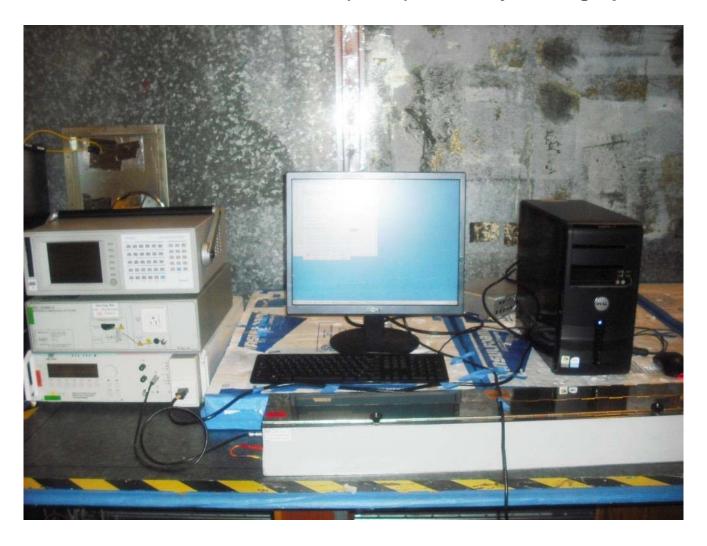
Device	Manufacturer	Model Number	Serial Number
Computer	HP	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.

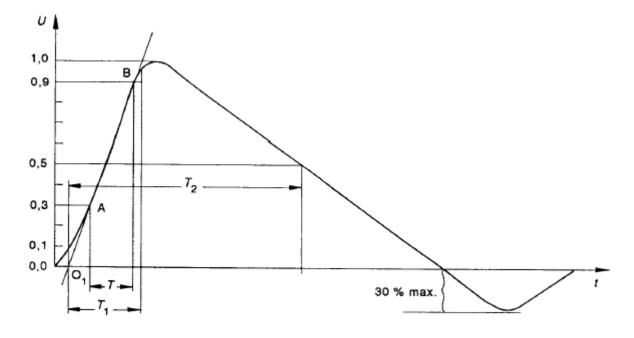

Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Electrical Fast Transient (burst) Immunity Data Sheet

ElectroMagnetic Investigations, LLC Burst Test Sheet Revision 08									
	SEN20130412 19-Apr-2013 Hillsboro								
	EN61000-4-4:20 ±1 kV Pk AC Poi ±0.5 kV Pk DC F ±0.5 kV Pk Signa	Ports		+A1:2010)					
Generator Injection Clamp	Test Eq UC C CI	CS	EM	acturer Test Test	Model Number UCS 500M4 Coupling	Calibration Due N/A N/A	080	Number 00-45 05-09	3
Injection Line	Test Number	Injection Method	Level	Stated Criteria	Comments / DU	T Response	Pass / Fail	Filename	Picture
Power line	1	Direct Inject	1000 V	В	No degradation of pr	erformance observed	Pass		Yes
Deviations fro	m Standard:	None		K.	-01		·		

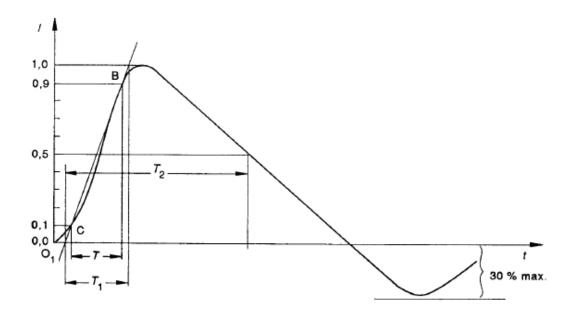
Electrical Fast Transient (burst) Immunity Photographs



Surge Immunity Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed on a non-conductive table. Each device is placed on the tabletop 10 cm from its neighboring device. The excess cable length was serpentined (not coiled) on the tabletop. The power lines subjected to the transient were plugged directly into the generator. I/O's that were subjected to the surge transient were listed on the surge data sheet.


The waveform of the transient can be seen in the following figures.

Front time: $T_1 = 1,67 \times T = 1,2 \ \mu s \pm 30 \ \%$

Time to half-value: $T_2 = 50 \, \mu s \pm 20 \, \%$

Figure: Surge Open Circuit Waveform

Front time: $T_1 = 1.25 \times T = 8 \mu s \pm 20 \%$

Time to half-value: $T_2 = 20 \ \mu s \pm 20 \ \%$

Figure: Surge Short Circuit Waveform

The DUT and the AE were operated in the modes specified by the client while the susceptibility was measured.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz
Test Level	1 kV DM, 2 kV CM

EMI4019.04	Testing Report	Page 58 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity limits as specified by EN EN55024:2010 (CISPR 24 Ed2:2010) to support compliance to the European Union EMC Directive 2004/108/EC.

The surge immunity test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Surge Immunity Results

Test Standard: IEC 61000-4-5:2005

Surge Immunity:DUT performed to Criteria B

Auxiliary Equipment in measurement area

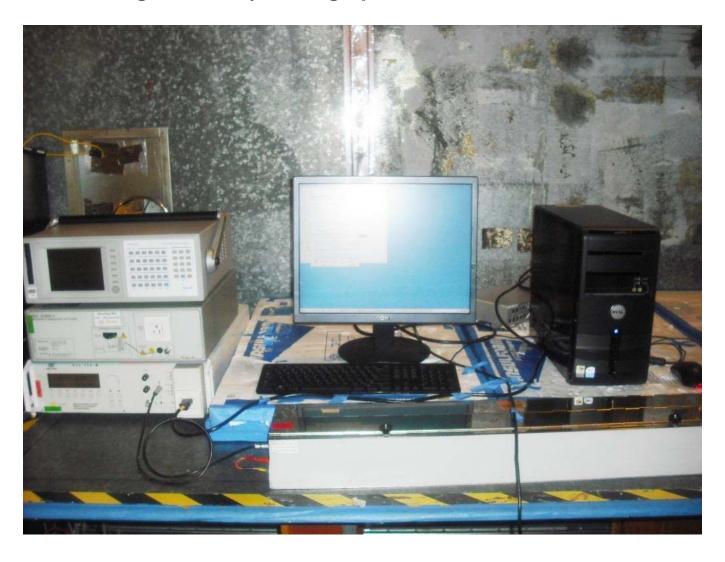
Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.


Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Surge Immunity Data Sheet

Test D	tion: Hillsboro	Elect	Rela Bar	Surge T	est Sheet ision 08	200 200 2	JT): and Digital I/O		
		006(IEC 61000-4-5 - AC - AC			Model				
Genera		uipment CS		facturer Test	Number UCS 500M4	Calibration Due N/A		Number 00-45]
Injection Line	Test Number	Injection Method	Level	Stated Criteria	Comments / DUT	Response	Pass / Fail	Filename	Picture
Power line - AC - DM	1	Direct Inject	500 V	Α	No degradation of per	formance observed.	Pass		Yes
Power line - AC - DM	1	Direct Inject	1000 V	Α	No degradation of per	formance observed.	Pass		
Power line - AC - CM	2	Direct Inject	500 V	Α	No degradation of per	formance observed.	Pass		
Power line - AC - CM	2	Direct Inject	1000 V	Α	No degradation of per	formance observed.	Pass		
Power line - AC - CM	2	Direct Inject	2000 V	Α	No degradation of per	formance observed.	Pass		
				-			_		
				-				_	_
	-	 		+	+		-	+	+
	-	 		1			-	+	+
	37 -5	 						1	+
				1				1	1
Deviations	s from Standard:	None			I.		1.		,

Surge Immunity Photographs

RF Conducted Immunity Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area were placed on a non-conducting surface 10 cm above a ground plane. Each device is placed on the tabletop 10 cm from its neighboring device. The cables were serpentined 3 cm above the ground plane. Any cables not being tested were fitted with a decoupling device. Power entered the DUT and the AE through a coupling decoupling network which was bonded to the ground plane.

The DUT and the AE were operated in the modes specified by the client while the susceptibility was measured.

The RF field was calibrated with a 150 Ω calibration jig as specified within IEC 61000-4-6. The power required to produce the required field strength was recorded for playback when the DUT is placed within the test fixture.

The power lines of the DUT were tested with the appropriate CDN. The power passed through the CDN and the RF was coupled onto the power line.

The I/O cables greater than 3 m were tested with either a CDN designed for the specific I/O or a current clamp. The I/O specific CDN was placed in series with the system and tested like the power CDN. The clamp was placed around the I/O line being tested and placed as close to the DUT as possible, but no more than 30 cm away.

Device Under Test	Model 826
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board
Serial Number	519698
I/O Ports Populated for test	5
Clock Frequencies (>9kHz)	50 MHz
Modes of Operation	Sending and receiving analog and digital signals
Operating System (Version)	Windows
Exercising Software (version)	826 Test Application S/W
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz
Test Level	3 Vrms, 150 kHz to 80 MHz

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity limits as specified by EN55024:2010 (CISPR 24 Ed2:2010) to support compliance to the European Union EMC Directive 2004/108/EC.

EMI4019.04	Testing Report	Page 63 of 75
Report_SEN20130412	ElectroMagnetic Investigations	Model 826

The RF conducted immunity test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Conducted Immunity Results

Test Standard: IEC 61000-4-6:2008

Auxiliary Equipment in measurement area

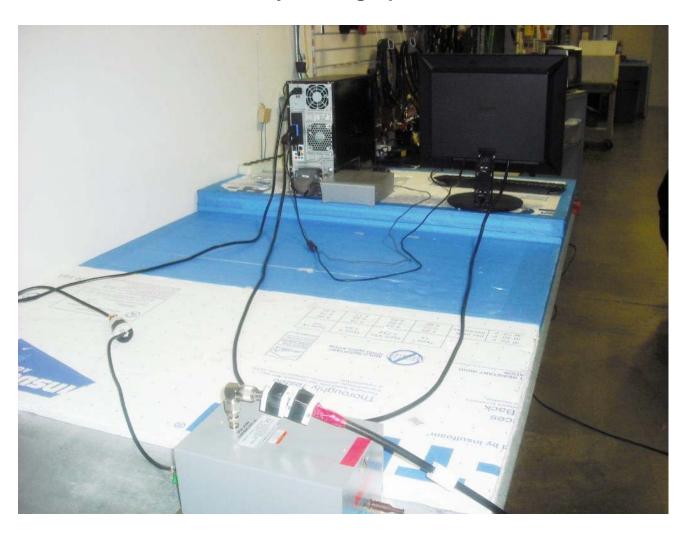
Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

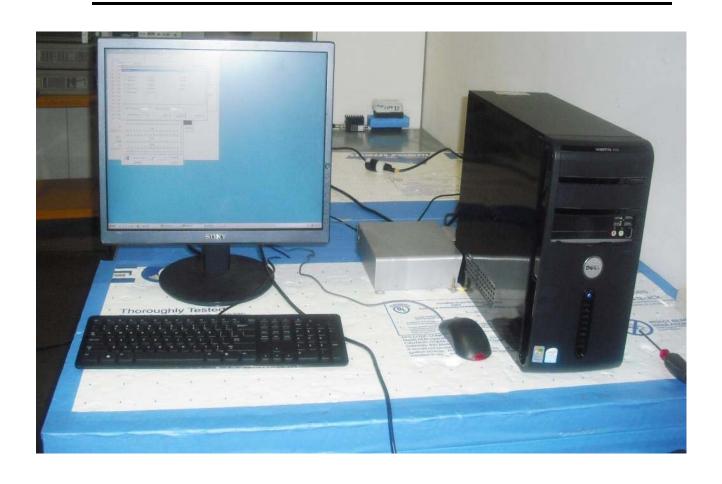
^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.


Cables


Type of Cable	Shield?	Length	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Conducted Immunity Data Sheet

Job Reference Number. Test Date: Location: Test Level (V/m);	18-Apr-2013 Hillsboro	Elect	Condu	cted Imm	nunity Tes	Device Under Test (DUT): Serial Number Voltage/Freq: Test Filename: Test Operator:	and Digital I/0 519698 120 V 60 Hz SEN_CI_		
	EN61000-4-6:20 3 Vrms AC/DC/ 3 Vrms I/O (>3n	009(IEC 61000-4- Telcom]
	Test Ed	uipment	Manuf	acturer	Model Number	Calibration Due	Seri	al Number	
Analyzer	85	566	Hewlett Paci	ard (Agilent)	85650A	20-Feb-2018	_	37A04105	
Injection Probe 1		ИЗ	FC	cc	FCC-801-M3- 25A	20-Sep-2015	4054		
Injection Probe 2	В	ICI	FC	CC	F-120-9A	N/A	401		
Injection Probe 3	N	I/A	N	/A	N/A	N/A	N/A		
Monitor Probe	Currer	nt Probe	FC	CC	F-33-1	10-Feb-2015		908	
Amplifier	A	mp	15	1	CMX5001	N/A	21	51-1196	=
Signal Generator		Gen		Schwarz	SME 03	21-Feb-2018	DE14511		-
6 dB Pad		id6b		W	250N	24-Jan-2014	N/A		1
Injection line Power Line	Test Number	Injection Method M3 - CDN	Start (MHz)	Stop (MHz)	Criteria A	Comments / DUT Response No degradation of performance o	bserved.	Pass / Fail	Picture Yes
						, and the second			
		ř.			1 1				
					T			1	1
					3 2				
					-			_	
								1	1
					1				
Deviations t	from Standard:	None				•	St.		

Conducted Immunity Photographs

Voltage Sag and Interrupts Immunity Information

The client provided the test modes, configurations, and operational settings for the DUT and any supporting equipment.

The DUT and the AE that is designated to be placed in the measurement area

The DUT and the AE were operated in the modes specified by the client while the susceptibility was monitored.

During the voltage sag immunity, the mains were subjected to the specified percent voltage levels less than the rated voltage for the specified duration. Each specified sag percentage, and time were recorded with the performance of the DUT.

During the voltage interruption, the mains were reduced to less than five percent the nominal voltage for the specified duration. The specified duration was recorded with the performance of the DUT.

Device Under Test	Model 826		
Functional Description of DUT	Versatile analog and digital I/O system on a PCI Express board		
Serial Number	519698		
I/O Ports Populated for test	5		
Clock Frequencies (>9kHz)	50 MHz		
Modes of Operation	Sending and receiving analog and digital signals		
Operating System (Version)	Windows		
Exercising Software (version)	826 Test Application S/W		
Power Supply Voltage, Frequency	120 V 60 Hz / 230 V 50 Hz		
Test Level	>95% drop, 10 mS - Perf. B 30% dip 0.5 S - Perf. C >95% drop, 5 S - Perf. C		

Purpose

The purpose of the testing is to determine if the Model 826 is compliant to electromagnetic immunity limits as specified by EN55024:2010 (CISPR 24 Ed2:2010) to support compliance to the European Union EMC Directive 2004/108/EC.

The voltage sag and interrupts immunity test was performed using the parameters above. If any work was done to investigate a worst-case setup, the worst-case setup would be listed.

DUT Modifications

No modifications were done to the DUT. No EMI suppression was added to the cabling. The DUT was tested as delivered to EMI.

Voltage Sag and Interrupts Immunity Results

Test Standard: EN61000-4-11:2004

Voltage Sag and Interrupts Immunity:DUT performed to Criteria B

Auxiliary Equipment in measurement area

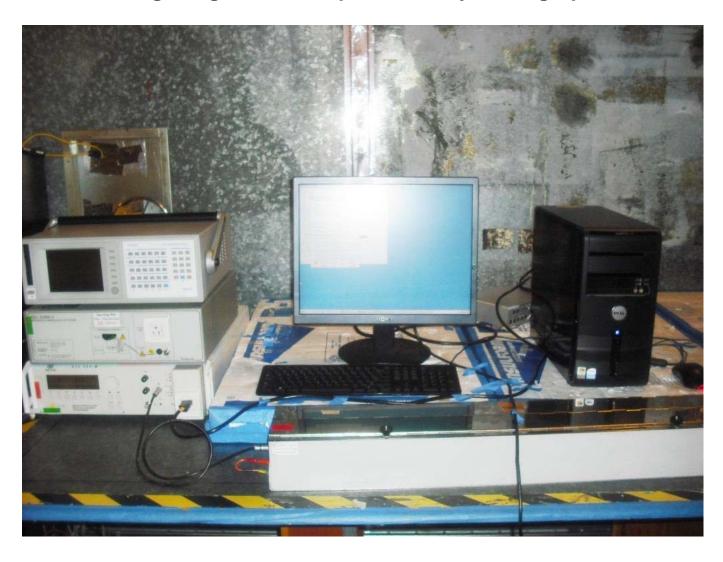
Device	Manufacturer	Model Number	Serial Number
Computer	НР	DC7900	C1292386
Keyboard	Dell	N/A	N/A
Mouse	Dell	N/A	N/A
Test Box	Sensoray	826TA	N/A

^{*} Note: This includes all equipment connected to the DUT and located within the measurement/testing area.

Auxiliary Equipment outside measurement area

Device	Manufacturer	Model Number	Serial Number
N/A	N/A	N/A	N/A

^{*} Note: This includes all equipment isolated from the DUT and the measurement/testing area.


Cables

Type of Cable	Shield?	Length (m)	Ferrite?	Shipped with Product?	Connection 1	Connection 2
Flat Ribbon 50	Yes	0.45m	No	No	826 J3	Test Box D1
Flat Ribbon 50	Yes	0.45m	No	No	826 J2	Test Box D2
Flat Ribbon 26	Yes	0.45m	No	No	826 J5	Test Box C1
Flat Ribbon 26	Yes	0.45m	No	No	826 J4	Test Box C1
Flat Ribbon 50	Yes	0.45m	No	No	826 J1	Test Box A

Voltage Sag and Interrupts Immunity Data Sheet

Job Reference Number: Test Date: Location:	19-Apr-2013	Elect	Dips T Relat	s, Interru	pts Test Shee	Device Under Test (DU Serial Numl Voltage/Fr	JT): and Digital I/O		
		Perf. C							
Generator		uipment CS		acturer Test	Model Number UCS 500M4	Calibration Due N/A		Number 00-45	3
Injection Line	Test Number	DIP	Time	Stated Criteria	Comments / DU1	Response	Pass / Fail	Filename	Picture
Power Line	1	100% 0 V	10 ms	В	No degradation of pe		Pass		Yes
Power Line	2	30% 161 V	500 ms	С	No degradation of pe	rfomance observed.	Pass		Yes
Power Line	3	100% 0 V	5 second	С	Computer can be turn	ned back on after test.	Pass		Yes
							_	-	_
								-	
Deviations fro	om Standard:	None			1				

Voltage Sag and Interrupts Immunity Photographs

Appendix A: Performance Criteria

During the immunity testing, the Device under test is observed for variances beyond what is considered normal. The client is ultimately responsible for the compliance of the DUT and its supporting system. However, ElectroMagnetic Investigations tries to indicate to the client the performance of the product. In the case where the referenced standard specifies the acceptable deviations, the performance criteria noted within this report corresponds to it. In the case that the customer specifies the acceptable performance, ElectroMagnetic Investigations simply reports as per the test plan.

In general, the test performance criteria follows the pattern listed.

Performance Criteria A

- The DUT does not have any noticeable deviations in it performance before, during or after the application of the EMC test.
- If a range of performance is specified as normal operation, the DUT did not have any readings outside of this range before, during or after the application of the EMC test.

Performance Criteria B

- The DUT does not have any deviations of performance before or after the application of the EMC test, but during the application a deviation is noted that is not considered normal operation. When the EMC test is paused or completed the DUT recovered on its own and did not require any user intervention to return it to normal operation.
- If a range of performance is specified as normal operation, the DUT's performance was outside of this range during the application of the test, but recovered on its own and operated within its normal range after the application of the EMC test.
- No permanent damage occurred to the DUT or any AE as a result of the disturbance.

Performance Criteria C

- The DUT was operating normally before the application of the EMC test, but during the application, the DUT stopped operating normally, and did not recover after the application of the EMC test until an operator intervened. This includes but is not limited to:
 - o Power cycling the DUT,
 - o Restarting the exercising software on the DUT, and

- o Unplugging and replugging the DUT or any AE.
- The act of "recovering" the DUT must be something that could be accomplished by the customer with little training.
- No permanent damage occurred to the DUT or any AE as a result of the disturbance.

Performance Criteria D

- The DUT was operating normally before the application of the EMC test, but could not be made to function normally after the completion of the test.
- The recovery of the DUT took significant expertise to return to normal operation.
- There was permanent damage to the DUT during the application of the EMC test.