
USB 8-Channel Sensor Interface
Technical Manual

Model 2218 | Rev.1.0.1 | March 2024

Copyright © 2024 Sensoray

Table of Contents

Chapter 1: Introduction...................................1
1.1 Functional overview...1

1.1.1 Sensor interfaces...1
1.1.2 Digital I/Os..2

Chapter 2: Installation and Operation..............3
2.1 Installation overview..3

2.2 Back panel..4
2.2.1 Device address switch...4
2.2.2 Status indicators..4

2.3 GPIO connections..5

2.4 Isothermal bay..6

2.5 Analog connections..6
2.5.1 Best practices..7
2.5.2 RTDs, thermistors and resistors..........................7

2.5.2.1 Two-wire circuit...8
2.5.2.2 Four-wire circuit...8

2.5.3 Thermocouples..9
2.5.4 Voltage..9

2.6 Measurement noise..9
2.6.1 Warm-up noise..9
2.6.2 Other noise..9

Chapter 3: API...10
3.1 Overview..10

3.1.1 Error codes..10

3.2 Admin functions...10
3.2.1 s2218_OpenApi..10
3.2.2 s2218_CloseApi..11
3.2.3 s2218_OpenDevice...11
3.2.4 s2218_CloseDevice...12
3.2.5 s2218_ErrString..12
3.2.6 s2218_GetApiVersion.......................................13
3.2.7 s2218_GetDeviceVersions................................13

3.3 Analog configuration.......................................14
3.3.1 s2218_SetSensorType.......................................14

3.3.2 s2218_SetOpenSensorValues...........................15
3.3.3 s2218_GetAnalogConfig..................................16

3.4 Data acquisition..16
3.4.1 Data reports...16
3.4.2 Stream control...17
3.4.3 Functions...17

3.4.3.1 s2218_SetTrigConfig...............................17
3.4.3.2 s2218_GetTrigConfig...............................17
3.4.3.3 s2218_SetTrigEnable...............................18
3.4.3.4 s2218_GetTrigEnable...............................18
3.4.3.5 s2218_WaitForDataReport.......................18
3.4.3.6 s2218_ReadDeviceTemp.........................20

3.5 Alarms..20
3.5.1 s2218_SetLoThreshold.....................................21
3.5.2 s2218_SetHiThreshold......................................21
3.5.3 s2218_SetLoLimitEnable.................................22
3.5.4 s2218_SetHiLimitEnable..................................22
3.5.5 s2218_SetLoAlarmEnable................................22
3.5.6 s2218_SetHiAlarmEnable.................................23
3.5.7 s2218_WaitForLimitAlarm...............................23

3.6 GPIO..24
3.6.1 Data structures..24

3.6.1.1 Flag byte...24
3.6.1.2 S2218_GPIO_PAIR.................................24
3.6.1.3 S2218_GPIO_CONFIG...........................25
3.6.1.4 S2218_GPIO_SETTINGS.......................25

3.6.2 Functions...26
3.6.2.1 s2218_SetGpioOutputs.............................26
3.6.2.2 s2218_GetGpioInputs...............................26
3.6.2.3 s2218_SetGpioConfig..............................27
3.6.2.4 s2218_GetGpioSettings............................27

3.7 Edge capture...28
3.7.1.1 s2218_GpioCapEnable.............................28
3.7.1.2 s2218_WaitForGpioEvent........................29

Chapter 4: Specifications...............................31
4.1.1 General specifications.......................................31
4.1.2 Sensor specifications...32

Chapter 5: Limited warranty.........................33

2218 Instruction Manual i Table of Contents

Chapter 1: Introduction

1.1 Functional overview
Model 2218 is a USB-compatible module that interfaces eight sensors to a host computer. It provides excitation for passive
sensors and complete signal conditioning for thermocouples, RTDs and thermistors. Each channel can be independently
configured to measure voltage, resistance, or any supported sensor type. In addition, eight independent digital I/O lines (3.3
Volt logic) are available for general-purpose use. The module is USB-powered; no external power supply is required.

Figure 1: Model 2218 block diagram

1.1.1 Sensor interfaces

Each sensor channel provides complete signal conditioning for a variety of sensor types, thus allowing any channel to be
directly connected to a thermocouple, RTD, thermistor, resistor or DC voltage.

Pulsed excitation is provided for thermistors, resistors and RTDs, which minimizes sensor self-heating and reduces power
consumption. Excitation signals are routed to dedicated connector pins to allow users to implement four-wire sensor circuits
that eliminate lead-loss errors.

Cold junction correction is automatically applied to thermocouples, and fully differential inputs provide common-mode
voltage rejection. Open-circuit detection is automatically activated when a sensor channel is configured to operate with a
thermocouple. This is useful for triggering alarms when open sensors are detected, and for forcing the desired system
response to fault conditions in closed-loop control applications.

The module automatically scans all sensor channels. As each channel is scanned, the sensor is excited, digitized,
normalized to high-precision internal standards, linearized, converted to engineering units, and checked against user-
defined alarm thresholds.

The data from select scans are packaged into time-stamped data reports, which are sent to the host computer at a user-
defined, periodic rate. The host is automatically notified (via API blocking functions) when data reports are available and
when sensor alarm thresholds are exceeded, thereby eliminating the need for host polling.

2218 Instruction Manual 1 Introduction

1.1.2 Digital I/Os

The module's eight general-purpose digital I/Os (GPIOs) may be independently configured to operate as an input or output.
The GPIOs use 3.3 V logic levels.

When a GPIO is configured as an input, weak pull-up and pull-down resistors are available which may be optionally
enabled. In many cases, these can be used in lieu of external resistors when GPIOs are connected to passive devices such as
mechanical switches and optocouplers.

Each GPIO has an independent debounce filter with a filter time of 0 to 255 milliseconds, programmable in 1 ms steps.
These filters allow a GPIO to be configured to reject contact bounce and other spurious signals.

Input edge detection is supported on each GPIO. The GPIO pins are automatically sampled at 1 kS/s, which allows pulses
as short as 1 millisecond to be detected. The module will automatically notify the host computer (via API function
s2218_WaitForGpioEvent) when edges have been detected, thereby making it possible to implement an event-driven
system and eliminate polling.

2218 Instruction Manual 2 Introduction

Chapter 2: Installation and Operation

2.1 Installation overview
To install the module:

• Set the Device address switch.

• Remove the Isothermal bay cover.

• Connect analog signal wires to the sensor terminal blocks as explained in Analog connections.

• Install the Isothermal bay cover.

• Connect digital signal wires to the GPIO terminal blocks.

• Attach the USB cable.

• Observe the Status indicators to confirm that the module is operating normally.

To remove the module:

• Disconnect the USB cable.

• Disconnect digital signal wires from the GPIO terminal blocks.

• Remove the Isothermal bay cover.

• Disconnect analog signal wires from the sensor terminal blocks.

2218 Instruction Manual 3 Installation and Operation

2.2 Back panel

Figure 2: Model 2218 back panel

2.2.1 Device address switch

A computer may be connected to up to sixteen model 2218 modules directly or through powered USB hubs, or via a
combination of these. To facilitate this, each module is assigned an address between zero (factory default) and 15 by
rotating its rotary device address switch (see Figure 2) with a small flat-tip screwdriver. A module must be disconnected
from USB while its address is being changed.

When calling API functions, the computer communicates with a particular module by specifying the module's address. If a
computer will connect to multiple modules then each module must be assigned a unique address. This is done by setting the
address switches so that every module is assigned a different address.

2.2.2 Status indicators

Two status LEDs are located on the back panel (see Figure 2): Heartbeat and Fault. Both LEDs will light for approximately
0.5 seconds when the module is powering up (i.e., when USB is connected) to allow users to verify they are functional.
After this, the LEDs are used to indicate various module conditions:

LED
Module condition

Fault Heartbeat

Off Flashing Normal operation

On Flashing Analog subsystem is booting or has a persistent fault

Flashing On Digital power supply fault

Flashing Flashing Analog power supply fault

Flashing Off Internal communication error

On On Module boot failure

Off Off USB disconnected or USB power supply malfunction

2218 Instruction Manual 4 Installation and Operation

2.3 GPIO connections
GPIO signals are accessible at the removable 10-position
terminal block located on the module's front panel. This terminal
block provides a GND terminal, a +3.3V terminal and one
terminal for each GPIO.

GPIO voltages are referenced to the GND terminal, which is
isolated from USB GND with a 2 MΩ resistor.

GPIOs are not 5V tolerant and can be damaged

if exposed to negative voltages or voltages

greater than +3.3V.

Upon power up or module reset, all GPIO pins are configured as
inputs by default, with a weak pull-down resistor enabled. The
resistor bias can be disabled or changed to pull-up via the API
s2218_SetGpioConfig function.

Note: it is recommended to use a strong, external pull-up or pull-down resistor if the GPIO load is connected via a long
cable or if external noise is likely to be coupled onto a GPIO circuit.

2218 Instruction Manual 5 Installation and Operation

Figure 3: GPIO terminal block

Figure 4: TB pinout

GPIO terminal block

V
C
C
3
3

G
P
I
O
0

G
P
I
O
1

G
P
I
O
2

G
P
I
O
3

G
P
I
O
4

G
P
I
O
5

G
P
I
O
6

G
P
I
O
7

G
N
D

Figure 5: Active-high output

GPIO

GND

Load

Figure 6: Active-high input w/internal pull-down enabled

+3.3V

GPIO

2.4 Isothermal bay
Four removable terminal blocks (TBs) are provided for sensor
connections. These terminal blocks (TB6-TB9) are located in a
recessed isothermal bay near the front of the module.

The isothermal bay is enclosed by a removable cover. When the
cover is installed (Figure 7), a narrow slot is exposed between
the cover and module body through which sensor wires may
pass. This provides a protected, isothermal environment for TB
connections, which is essential for high-accuracy thermocouple
measurement and for preventing thermocouple effects in other
sensor types.

To gain access to the TBs, remove the four hold-down screws
and lift the isothermal bay cover as shown in Figure 8. If
desired, the TBs may be detached from the module as needed to
expedite wiring changes.

After connecting your field wires to the TBs, re-install the
isothermal bay cover and secure it in place with four screws.

When securing the isothermal bay cover, do

not allow sensor wires to flex the cover as this

may damage the cover.

2.5 Analog connections

The SH and SL terminals are are used for all sensor types; these are the differential voltage sense inputs. Every voltage
source is treated as a differential signal pair. If you are connecting a single-ended source, connect the signal to SH and
connect SL to the signal's 0 V ground reference.

2218 Instruction Manual 6 Installation and Operation

Figure 7: Isothermal bay with cover installed

Figure 8: Bay cover removal/installation

Figure 10: Analog terminal block (1 of 4)Each sensor channel has five screw terminals which are
distributed over two terminal blocks:

Signal Function

SH Positive voltage sense input

SL Negative voltage sense input

PH Positive excitation output

PL Negative excitation output

GND Cable shield or signal GND

Figure 9: Analog terminal block pinouts (as viewed from front of module)

TB6

TB7

TB8

TB9

G
N
D

P
L
0

P
H
0

P
L
1

P
H
1

G
N
D

P
L
2

P
H
2

P
H
3

P
L
3

G
N
D

S
L
0

S
H
0

S
L
1

S
H
1

G
N
D

S
L
2

S
H
2

S
L
3

S
H
3

G
N
D

S
L
4

S
H
4

S
L
5

S
H
5

G
N
D

S
L
6

S
H
6

S
L
7

S
H
7

G
N
D

P
L
4

P
H
4

P
L
5

P
H
5

G
N
D

P
L
6

P
H
6

P
L
7

P
H
7

Passive sensors also require connections to the PH and PL terminals, which supply positive and negative differential
excitation to the sensor. These terminals should be connected only if the sensor requires excitation.The GND terminal may
be connected to a cable shield or used as a signal
reference voltage, or both.

When GND is connected to a cable shield, the other
end of the shield should be left unconnected to avoid
ground loops. If both a shield and a signal GND are
needed then it is recommended to connect the GND
terminal to the shield and to a separate, dedicated
signal GND conductor as shown in Figure 11.

2.5.1 Best practices

The following practices are recommended for analog field wiring:

• Use shielded cable.

• Connect the GND terminal to the cable shield. Do not connect the other end of the cable shield.

• Use a twisted wire pair for SH and SL.

• Use a twisted wire pair for PH and PL.

• Do not route sensor cables near high-voltage or high-current conductors.

• Avoid long cable runs.

2.5.2 RTDs, thermistors and resistors

RTDs, thermistors and other passive resistive devices may be connected in a two-wire or four-wire circuit.

2218 Instruction Manual 7 Installation and Operation

Figure 11: Using GND as both shield and signal reference

shield

Signal
GND

GND

2218
 TB

2.5.2.1 Two-wire circuit

In a two-wire circuit, the SH and PH terminals are
shorted together at the module end of the cable, as are
SL and PL. This simplifies wiring but introduces error
because it forces excitation current to flow in the sense
wires, resulting in lead losses (voltage drops across the
sense wires). These errors may be significant if high
measurement accuracy is required.

2.5.2.2 Four-wire circuit

In a four-wire circuit, independent excitation and sense
wires are routed all the way to the sensor, thus avoiding
current in the sense wires and preventing lead loss
errors. This is especially important for RTDs, which
have relatively low resistance. Thermistors have higher
resistance than RTDs over much of their operating
range. Consequently, a two-wire circuit may be
satisfactory if a thermistor will only be operated at high
resistance values, but at lower resistance values it is
recommended to use a four-wire circuit.

2218 Instruction Manual 8 Installation and Operation

Figure 12: Two-wire circuit

shield

SH

SL

PH

PL

GND

Figure 13: Four-wire circuit

shield

SH

SL

PH

PL

GND

2.5.3 Thermocouples

Thermocouples must be connected to the SH and SL
terminals; the PH and PL terminals must be left
unconnected.

Connect the positive thermocouple wire to the SH
terminal and the negative wire to the SL terminal. The
insulation on thermocouple wire is usually color coded
to indicate polarity, with red indicating the negative
thermocouple wire.

2.5.4 Voltage

When measuring a DC voltage, the voltage source must
be connected to the SH and SL terminals and the PH
and PL terminals must be left unconnected.

High common-mode voltage (CMV) can cause
measurement errors or damage circuitry on the 2218.
To avoid excessive CMV, it is recommended that you
reference your voltage source to the GND terminal on
the 2218 terminal block. If necessary, use a dedicated
signal GND conductor to do this as shown in Figure 11.

2.6 Measurement noise

2.6.1 Warm-up noise

Sensor data may be noisy when the module is warming up or subjected to thermal transients. This is characterized by sensor
data that periodically “jumps” and then drifts for approximately seven seconds.

Warm-up noise will subside when the module reaches thermal stability. For best accuracy, it is recommended to allow time
for the module to reach thermal stability and to protect it from sudden temperature changes.

2.6.2 Other noise

It is not within the scope of this manual to discuss all causes and treatments of noise, however, a few simple techniques are
available which will solve many noise problems:

• The apparent noise may be the result of incorrect wiring or unanticipated external influences. Inspect the sensor
signals with an oscilloscope to confirm they match your expectations.

• In the case of thermocouples and DC voltage sources, the sensor signals must be referenced to the module's GND
terminal. If this rule is violated, external fields could induce voltage noise that the module cannot reject. In the case
of thermocouples it may be possible to resolve this by grounding the hot junction, or in the case of a DC voltage
source, by grounding either SH or SL (but not both).

2218 Instruction Manual 9 Installation and Operation

Figure 14: Thermocouple connection

shield
red

SH

SL

GND

Figure 15: DC voltage connection

shield

V+

V-

SH

SL

GND

Chapter 3: API

3.1 Overview
The 2218 module is controlled and monitored by calling functions in the 2218 application program interface (API). Many
of the API functions will cause the computer to send a command to the module, which in turn will cause the module to send
a reply to the computer. All such functions return when the reply is received, or when a time limit has been exceeded,
whichever occurs first.

3.1.1 Error codes

Every API function returns an error code that indicates whether it executed normally or, if not, what went wrong. The
symbolic names of error codes are listed below; the numeric values of these codes can be found in the API source code.

Error code Description
S2218_ERR_OK Success – no errors detected.
S2218_ERR_OPCODE Command not recognized.
S2218_ERR_ARG Illegal function argument value.
S2218_ERR_OFFLINE Analog circuitry is unpowered, but the function requires it to be powered.
S2218_ERR_FAULT Failed to execute command due to hardware fault.
S2218_ERR_REOPEN Attempted to power-up analog circuitry when it is already powered.
S2218_ERR_CREATE_RESOURCE Failed to create system resources required for a 2218 module.
S2218_ERR_RESOURCE_CLOSED A resource is closed or unavailable.
S2218_ERR_DEVICE_CLOSED The module is closed, but the function requires it to be open.
S2218_ERR_DEVICE_OPEN The function tried to open a 2218 module which is already open.
S2218_ERR_WAS_SHUTDOWN The USB connection is closed.
S2218_ERR_READ USB read error.
S2218_ERR_WRITE USB write error.
S2218_ERR_OPENHIDLIB Failed to open the system library HIDLIB.
S2218_ERR_DEVICE_NOT_FOUND The system failed to detect the specified 2218 module.
S2218_ERR_COMMAND_MISMATCH Message synchronization error between system and 2218 module.
S2218_ERR_API_OPEN Attempted to open the API when it is already open.
S2218_ERR_API_CLOSED Attempted to close the API when it is already closed.
S2218_ERR_LOCK_TIMEOUT Failed to access a 2218 module because another thread/process is hogging it.
S2218_ERR_SIG_TIMEOUT Timed out waiting for a reply from a 2218 module.
S2218_ERR_NOT_ALLOWED Command prohibited by current settings.
S2218_ERR_SYSTEM System error.

3.2 Admin functions

3.2.1 s2218_OpenApi

int s2218_OpenApi(int *devflags);

Arguments

devflags
Receives bit flags that indicate detected 2218 modules.

2218 Instruction Manual 10 API

Description

This function initializes the API and detects all 2218 modules. It must be called once before any other API functions
are called.

If the function succeeds, devflags will contains a set of bit flags indicating all detected modules. Each bit position
corresponds to the the address programmed onto a module's rotary device address switch. For example, bit 0 will be set
if a module with address 0 is detected. devflags will contain zero if no boards are detected.

If two or more modules have been assigned the same address, only one of the modules will be detected and the other
modules will be inaccessible. Duplicate addresses are not reported by the API, so users must ensure that each module
has been assigned a unique address.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Open the API and list all detected modules

int addr, flags, errcode = s2218_OpenApi(&flags);
if (errcode != S2218_ERR_OK)
 printf("s2218_OpenApi() returned error code %d", errcode);
else if (flags == 0)
 printf("No modules were detected");
else {
 printf("Modules were detected at these addresses:\n");
 for (addr = 0; addr < 16; addr++) {
 if (flags & (1 << addr))
 printf("%d\n", addr);
 }
}

3.2.2 s2218_CloseApi

int s2218_CloseApi(void);

Description

This function closes all open modules and then closes the API. It must be called once before the application program
closes. No other API functions should be called after this function is called.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

int errcode = s2218_CloseApi();

3.2.3 s2218_OpenDevice

int s2218_OpenDevice(int devaddr, int *online);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

2218 Instruction Manual 11 API

online
Receives module's online status.

Description

This function enables communication with a 2218 module. It must be called once for each 2218 module before calling
other API functions that reference the module.

If the module was successfully opened, a status code is returned in online. The status code will be S2218_ERR_OK if
the module is operating normally, or a non-zero error code if the module is operating abnormally.

Return value

The function returns S2218_ERR_OK if the module was opened, or a non-zero error code if the module was not
opened.

Example

int online, errcode = s2218_OpenDevice(0, &online);
if (errcode != S2218_ERR_OK)
 printf("Can't open module: error code = %d", errcode);
else if (online != S2218_ERR_OK)
 printf("Module is operating abnormally: status code = %d", online);
else
 printf("Module is open and operating normally");

3.2.4 s2218_CloseDevice

int s2218_CloseDevice(int devaddr);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

Description

This function must be called once for each 2218 module to terminate communication with the module. After calling
this function, the application is not allowed to call any other API functions that reference the module.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

int errcode = s2218_CloseDevice();
if (errcode != S2218_ERR_OK)
 printf("s2218_CloseDevice() returned error code %d", errcode);

3.2.5 s2218_ErrString

const char *s2218_ErrString(int errcode);

Arguments

errcode
API error code.

2218 Instruction Manual 12 API

Description

This function maps an API error code into a corresponding text string. It is useful for generating a descriptive error
message when an API function returns an error code.

Return value

This function returns a pointer to a text string that describes the error associated with errcode.

Example

int errcode = s2218_CloseApi();
if (errcode != S2218_ERR_OK)
 printf("s2218_CloseApi() failed: %s\n", s2218_ErrString(errcode));

3.2.6 s2218_GetApiVersion

int s2218_GetApiVersion(S2218_VERSION *ver);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

ver
Buffer for API version number.

Description

This function copies the API version number to ver.

Return value

This function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

S2218_VERSION ver;
int errcode = s2218_GetApiVersion(&ver);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);
else
 printf(“API version = %d.%d.%d\n”, ver.Major, ver.Minor, ver.Build);

3.2.7 s2218_GetDeviceVersions

int s2218_GetDeviceVersions(int devaddr, S2218_VERSION_INFO *ver);

Arguments

devaddr
Device address. This must match the settings of the 2218 module's rotary switch as described in section 2.2.1.

ver
Buffer for device version information.

Description

This function copies device version information to ver.

2218 Instruction Manual 13 API

Return value

This function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

S2218_VERSION_INFO ver;
int errcode = s2218_GetDeviceVersions(&ver);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);
else {
 printf(“Dev version %d.%d.%d\n”, ver.DevFw.Major, ver.DevFw.Minor, ver.DevFw.Build);
 printf(“Smad version %d.%d.%d\n”, ver.SmadFw.Major, ver.SmadFw.Minor, ver.SmadFw.Build);
 printf(“PWB rev %c”, ver.PwbRev);
}

3.3 Analog configuration

3.3.1 s2218_SetSensorType

int s2218_SetSensorType(int devaddr, int chan, SENSOR_TYPE sdc);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

sdc
Enumerated sensor type. Symbolic names for the sensor type codes are listed below; the associated numeric values
can be found in the API source code:

Sensor type code
Sensor attributes

Class Type/range Data units
SDC_DISABLED Disabled sensor channel
SDC_VOLTS_5V Voltage 5 V range Volts
SDC_VOLTS_500MV 500 mV range
SDC_VOLTS_100MV 100 mV range
SDC_OHMS_400 Resistance 400 Ω range Ω
SDC_OHMS_4K 4 kΩ range
SDC_OHMS_600K 600 kΩ range
SDC_TEMP_THERMOCOUPLE_B Thermocouple Type B °C
SDC_TEMP_THERMOCOUPLE_C Type C
SDC_TEMP_THERMOCOUPLE_E Type E
SDC_TEMP_THERMOCOUPLE_J Type J
SDC_TEMP_THERMOCOUPLE_K Type K
SDC_TEMP_THERMOCOUPLE_N Type N
SDC_TEMP_THERMOCOUPLE_T Type T
SDC_TEMP_THERMOCOUPLE_S Type S
SDC_TEMP_THERMOCOUPLE_R Type R
SDC_TEMP_THERMISTOR Thermistor 10K
SDC_TEMP_RTD_PT100_385_400 RTD Platinum, α = 385, 400 °C range

2218 Instruction Manual 14 API

SDC_TEMP_RTD_PT100_385_800 Platinum, α = 385, 800 °C range
SDC_TEMP_RTD_PT100_392_400 Platinum, α = 392, 400 °C range
SDC_TEMP_RTD_PT100_392_800 Platinum, α = 392, 800 °C range
SDC_TEMP_RTD_NI200 Nickel, 200
SDC_TEMP_RTD_NI1000 Nickel, 1000
SDC_TEMP_RTD_CU10 Copper, 10

Description

This function configures a sensor channel to measure a particular sensor type. Each invocation configures one channel,
so the function must be called eight times to configure all channels. After calling this function, valid sensor data will
not be available until the channel has been internally scanned.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Configure sensor channel 2 for type K thermocouple measurement
int errcode = s2218_SetSensorType(0, 2, SDC_TEMP_THERMOCOUPLE_K);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);

3.3.2 s2218_SetOpenSensorValues

int s2218_SetOpenSensorValues(int devaddr, u8 failHighFlags);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

failHighFlags
Flag bits (one per channel) that specify the data value expected upon open-sensor detection: 1 = maximum value; 0 =
minimum value.

Description

This function establishes the data values that the module will report in the event of an ADC over- or under-range. It
applies to all sensor types but is especially useful for channels that have been configured for thermocouples (via
s2218_SetSensorType), as they employ special circuitry to facilitate open thermocouple detection via forced ADC
over-range. This can be leveraged to trigger alarms when open sensors are detected, and to force the desired system
responses to fault conditions in closed-loop process control applications.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Program channels 0-3 to fail high, channels 4-7 to fail low.
int errcode = s2218_SetOpenSensorValues(0, 0x0F);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);

2218 Instruction Manual 15 API

3.3.3 s2218_GetAnalogConfig

int s2218_GetAnalogConfig(int devaddr, S2218_ANALOG_CONFIG *cfg);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

cfg
Buffer for analog configuration settings.

Description

This function returns the module's analog configuration settings in cfg, which must be large enough to accommodate a
S2218_CHAN_CONFIG structure.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Display module's analog configuration.
int i;
S2218_ANALOG_CONFIG cfg;
S2218_CHAN_CONFIG *ch = cfg.Chan;
int errcode = s2218_GetAnalogConfig(0, &cfg);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);
else {
 printf(“Sensor scan period = %d ms\n”, cfg.ScanPeriod);
 printf(“Send data report rate every %d scan(s)\n”, cfg.DataReportRate);
 printf(“CHAN, TYPE, OPEN, HILIM, LOLIM:\n”);
 for (i = 0; i < S2218_NUM_CHANS; ch++, i++) {
 printf(“%d,”, i);
 printf(“%d,”, ch->SensorType);
 printf(“%s,”, (cfg.OpenFlags >> i) & 1 ? “High” : “Low”);
 if (ch->AlarmLimitHigh.Enable) printf(“%d,”, ch->AlarmLimitHigh.Value); else printf(“Disabled”);
 if (ch->AlarmLimitLow.Enable) printf(“%d,”, ch->AlarmLimitLow.Value); else printf(“Disabled”);
 }
}

3.4 Data acquisition

3.4.1 Data reports

The 2218 module sends sensor data to your computer via messages called data reports. A data report consists of eight
sensor samples (one per channel), a timestamp that indicates when the message was enqueued for transmission, and various
other information. To ensure valid sensor data, you must first enable sensor scanning by calling s2218_SetTrigConfig,
and then enable data report transmissions by calling s2218_SetTrigEnable.

The API collects received data reports in a FIFO buffer so that your software can process them at convenient times. The
FIFO capacity is user-configurable at run time. If a new report arrives while the FIFO is full, it (or the oldest report in the
FIFO, depending on your preferred policy) will be dropped. Each report includes the total number of dropped reports since
the module booted; this is the only indication of dropped reports. Call s2218_WaitForDataReport to receive the oldest
report in the FIFO.

2218 Instruction Manual 16 API

3.4.2 Stream control

Two control modes are available for data report streaming: triggered and periodic. In both modes, the module will send a
data report upon user-selectable GPIO edge (configured via s2218_SetGpioConfig). In the periodic mode the module
will also transmit data reports according to a user-defined, periodic schedule.

Data streaming is disabled by default when the module is powered up. When your program is ready to start receiving sensor
data, it must call s2218_SetTrigEnable to select the stream control mode and enable streaming. This will enable GPIO
data report triggering and, in the timer mode, also start periodic data reports. When data reports are no longer needed, the
program should call s2218_GetTrigEnable to terminate the stream.

When using a GPIO to trigger data reports, the GPIO pin may be driven by an external signal or by its own output driver.
To synchronize data reports to an external signal (e.g., sampling clock), configure the GPIO pin as an input and connect it
to the external signal. Alternatively, the GPIO pin may be driven by the GPIO itself, which allows your software to trigger a
data report on demand. To implement this, configure the pin as an output and call s2218_SetGpioOutputs to trigger a
data report.

3.4.3 Functions

3.4.3.1 s2218_SetTrigConfig

int s2218_SetTrigConfig(int devaddr, S2218_TRIG_CONFIG *cfg);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

cfg
S2218_TRIG_CONFIG structure.

Description

This function configures the module's internal scanning parameters. See api2218.h for details. It includes the periodic
report rate (scans per report) and GPIO edge selector flags (see Data reports for details).

When the module performs a scan, it acquires and caches eight samples (one sample from each sensor channel) and
compares each sample to its programmed alarm limits. An alarm notification will be immediately sent to the computer
via s2218_WaitForLimitAlarm if a limit violation is detected and alarm reports are enabled. The cached samples are
used whenever a data report is generated.

The scanning period is specified by period. For example, when period=500, the module will perform one scan
every 500 ms, which corresponds to two scans per second. The minimum period is 200 ms; the function will fail and
return CMD2218_ERR_ARG if period is less than 200.

It is not recommended to call this function while data reports are streaming. If it's necessary to change the scan period
while streaming, stop the stream (via s2218_SetTrigEnable) before calling this function and then restart the
stream after this function returns.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.4.3.2 s2218_GetTrigConfig

int s2218_GetTrigConfig(int devaddr, S2218_TRIG_CONFIG *cfg);

2218 Instruction Manual 17 API

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

cfg
S2218_TRIG_CONFIG structure.

Description

This function returns the current trigger configuration.

3.4.3.3 s2218_SetTrigEnable

int s2218_SetTrigEnable(int devaddr, u8 enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

enable
Enable data acquisition.

Description

This function enables data report streaming and creates a FIFO buffer to receive data reports.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected. The function
will fail and return S2218_ERR_NOT_ALLOWED if streaming is already enabled.

3.4.3.4 s2218_GetTrigEnable

int s2218_GetTrigEnable(int devaddr, u8 *enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

enable
Current value (pointer to) of data acquisition enable

Description

This function retrieves the status of trigger enable.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.4.3.5 s2218_WaitForDataReport

int s2218_WaitForDataReport(int devaddr, S2218_DATAREPORT *report, int tmax);

2218 Instruction Manual 18 API

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

report
Buffer for the data report.

tmax
Maximum time to wait for a data report, in milliseconds.

Description

This function fetches the next available report from the data report FIFO and stores it in report. It will return
immediately if the FIFO is not empty or tmax=0, otherwise it will block until a data report arrives or tmax has
elapsed.

The function supports both polled and event-driven applications. For polled (non-blocking) operation, set tmax=0; this
will cause the function to return immediately even if the FIFO is empty. For event-driven applications, it is
recommended to set tmax=S2218_INFINITE_WAIT; this will cause the function to unconditionally block until a
report arrives or an error is detected.

Return value

The function will return S2218_ERR_OK if a data report is received within tmax. If tmax elapses before a data report
becomes available, or if tmax=0 and the FIFO is empty, the function will return S2218_ERR_SIG_TIMEOUT.

The function will return ERR_RESOURCE_CLOSED if data report streaming is disabled. Also, if another thread disables
streaming (by calling s2218_GetTrigEnable) while a caller is waiting in this function, the wait will be canceled
and this function will immediately return ERR_RESOURCE_CLOSED.

Example

// Event-driven operation: block until report is available
S2218_DATAREPORT report;
int errcode = s2218_WaitForDataReport(0, &report, S2218_INFINITE_WAIT); // block until report arrives
switch (errcode) {
 case S2218_ERR_OK: DisplayDataReport(&report); break;
 case S2218_ERR_RESOURCE_CLOSED: printf(“Stream was halted by another thread\n”); break;
 default: printf("%s\n", s2218_ErrString(errcode));
}

// Polled operation: return immediately even if no report is available
S2218_DATAREPORT report;
int errcode = s2218_WaitForDataReport(0, &report, 0); // never block
switch (errcode) {
 case S2218_ERR_OK: DisplayDataReport(&report); break;
 case S2218_ERR_SIG_TIMEOUT: printf(“No report available\n”); break;
 case S2218_ERR_RESOURCE_CLOSED: printf(“Stream was halted by another thread\n”); break;
 default: printf("%s\n", s2218_ErrString(errcode));
}

// Display samples from sensor channels 2 and 5, which are assumed to be configured for thermocouples.
void DisplayDataReport(S2218_DATAREPORT *report)
{
 double timestamp = report->TstampSec + report->TstampMsec / 1000.0; // timestamp in seconds
 printf(“Data received at timestamp = %f10.1:\n”, timestamp);
 printf(“ chan 2 = %f degrees C\n”, report->Data[2]);
 printf(“ chan 5 = %f degrees C\n”, report->Data[5]);
}

2218 Instruction Manual 19 API

3.4.3.6 s2218_ReadDeviceTemp

int s2218_ReadDeviceTemp(int devaddr, double *degC);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

degC
Buffer for temperature in degrees C.

Description

This function reads the module's internal temperature and stores it in degC.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

double degC;
int errcode = s2218_ReadDeviceTemp(0, °C);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);
else
 printf(“Module temperature = %f degrees C\n”, degC);

3.5 Alarms
A 2218 module can automatically monitor sensor data and notify your software when a sensor's data value strays outside
user-defined limits. To enable this function, your application program must first call s2218_SetTrigConfig and
s2218_SetTrigEnable to configure the module's internal scan rate and start it scanning. The scan rate determines how
frequently the module will check for limit violations.

Call s2218_SetLoThreshold and s2218_SetHiThreshold to configure a channel's upper or lower limit thresholds.
Together, the upper and lower limits specify the normal data range of the sensor. Call s2218_SetLoLimitEnable and
s2218_SetHiLimitEnable to enable limit reports without alarm trigger. Call s2218_SetLoAlarmEnable and/or
s2218_SetHiAlarmEnable to enable alarm reporting.

An alarm will “sound” when a limit violation is detected (i.e., sensor data value is greater than a channel's upper limit or
less than its lower limit). When this happens, the channel's high and low alarms are both automatically disabled and an
alarm report is sent to the computer. Use s2218_WaitForLimitAlarm to wait for and receive the report.

Every alarm report includes a timestamp that indicates when the limit violation was detected and a set of bit flags that
indicate which limits were violated:

Flags High alarms Low alarms

Bit number 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Sensor channel 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

2218 Instruction Manual 20 API

The API stores alarm reports in a FIFO so that the application program won't miss rapid back-to-back alarm reports. To
receive alarm notifications, the application must call s2218_WaitForLimitAlarm, which returns the oldest report in
the FIFO. Upon FIFO overflow, the oldest alarm report will be dropped from the FIFO to make space for the newest report.
Each alarm report includes the total number of dropped reports since the module booted; this is the only indication of
dropped alarm reports.

3.5.1 s2218_SetLoThreshold

int s2218_SetLoThreshLimit(int devaddr, u8 chan, double limit);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

limit
Data limit. The most negative data value in the normal operating range.

Description

This function configures a sensor channel's lower limit alarm threshold.

The limit value is expressed in the data units used by the channel's sensor type (e.g., Volts, ohms, °C). For example,
limit is expressed in °C for a channel that is measuring thermocouples.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Enable lower alarm limit of 375 degrees C on a thermocouple measurement channel.
int errcode = s2218_SetLoThreshold(0, 0, 375);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);

3.5.2 s2218_SetHiThreshold

int s2218_SetHiThreshold(int devaddr, u8 chan, double limit);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

limit
Data limit. The most positive data value in the normal operating range.

Description

This function configures a sensor channel's upper limit alarm threshold.

The limit value is expressed in the data units used by the channel's sensor type (e.g., Volts, ohms, °C). For example,
limit is expressed in °C for a channel that is measuring thermocouples.

2218 Instruction Manual 21 API

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.5.3 s2218_SetLoLimitEnable

int s2218_SetLoLimitEnable(int devaddr, u8 chan, int enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

enable
Limit enable: 1 = enable limit reports for this limit; 0 = disable limit reports for this limit.

Description

This function configures whether a sensor channel reports limit events in data reports.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.5.4 s2218_SetHiLimitEnable

int s2218_SetHiLimitEnable(int devaddr, u8 chan, int enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

enable
Limit enable: 1 = enable limit reports for this limit; 0 = disable limit reports for this limit.

Description

This function configures whether a sensor channel reports limit events in data reports.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.5.5 s2218_SetLoAlarmEnable

int s2218_SetLoAlarmEnable(int devaddr, u8 chan, int enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

2218 Instruction Manual 22 API

enable
Alarm enable: 1 = enable alarm for this limit; 0 = disable alarm for this limit.

Description

This function enables or disables the lower limit alarm. s2218_WaitForLimitAlarm will return when an alarm occurs.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.5.6 s2218_SetHiAlarmEnable

int s2218_SetHiAlarmEnable(int devaddr, u8 chan, int enable);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

chan
Sensor channel number in the range [0:7].

enable
Alarm enable: 1 = enable alarm for this limit; 0 = disable alarm for this limit.

Description

This function enables or disables the upper limit alarm. s2218_WaitForLimitAlarm will return when an alarm occurs.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

3.5.7 s2218_WaitForLimitAlarm

int s2218_WaitForLimitAlarm(int devaddr, S2218_ALARM_REPORT *report, int tmax);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

report
Buffer for alarm report.

tmax
Maximum time to wait for alarm report in milliseconds.

Description

This function fetches the oldest alarm report from the alarm FIFO and stores it in report. It will return immediately if
a report is available in the FIFO or tmax=0, otherwise it will block until a report arrives or tmax has elapsed.

To implement non-blocking (i.e., polled) operation, set tmax=0; this will cause the function to return immediately
even if the FIFO is empty. To disable timeouts, set tmax=S2218_INFINITE_WAIT; this will cause the function to
block until a report is available in the FIFO.

Return value

The function will return S2218_ERR_OK if a report was successfully fetched. If tmax elapses before a report becomes
available, or if tmax=0 and the alarm FIFO is empty, the function will return S2218_ERR_SIG_TIMEOUT.

2218 Instruction Manual 23 API

If another thread closes the module (by calling s2218_CloseDevice) while a caller is waiting in this function, the
wait will be canceled and this function will immediately return ERR_DEVICE_CLOSED.

Examples

// Event-driven operation: Block until a report is available in the alarm FIFO
S2218_ALARMREPORT report;
int errcode = s2218_WaitForLimitAlarm(0, &report, S2218_INFINITE_WAIT); // Wait for report
if (errcode == S2218_ERR_OK)
 ProcessAlarms(&report);
else
 printf(“ERROR!”);

// Polled operation: Fetch report if one is available, but don't block if alarm FIFO is empty
S2218_ALARMREPORT report;
int errcode = s2218_WaitForLimitAlarm(0, &report, 0); // Check for alarms without blocking
if (errcode == S2218_ERR_OK) // if alarm report was fetched
 ProcessAlarms(&report);
else if (errcode == S2218_ERR_SIG_TIMEOUT) // else if alarm FIFO is empty
 printf(“No alarms sounding”);
else // else must be an error
 printf(“ERROR!”);

// Display alarm report
void ProcessAlarms(S2218_ALARMREPORT *report)
{
 int chan;
 u16 flags = report->Event.Flags;
 u16 mask = 1;
 printf(“Alarm reported at time = %d.%3d”, report->Event.Timestamp.s, report->Event.Timestamp.ms);
 for (chan = 0; chan < 8; chan++, mask <<= 1)
 if (flags & mask) printf(“channel %d low alarm\n”, chan);
 for (chan = 0; chan < 8; chan++, mask <<= 1)
 if (flags & mask) printf(“channel %d high alarm\n”, chan);
}

3.6 GPIO

3.6.1 Data structures

3.6.1.1 Flag byte

Several GPIO-related structures contain flag bytes. A flag byte consists of eight bit flags, wherein each bit is associated
with a particular GPIO:

Bit 7 6 5 4 3 2 1 0

GPIO GPIO7 GPIO6 GPIO5 GPIO4 GPIO3 GPIO2 GPIO1 GPIO0

3.6.1.2 S2218_GPIO_PAIR

This structure contains two bytes which are associated with rising and falling GPIO edges, respectively. Each byte may be
an integer value or a flag byte.

u8 Rising

Integer value or flag byte associated with rising GPIO edges.

u8 Falling

2218 Instruction Manual 24 API

Integer value or flag byte associated with falling GPIO edges.

3.6.1.3 S2218_GPIO_CONFIG

This structure specifies the operating modes of all GPIOs.

S2218_GPIO_PAIR DbTime[8]

Debounce intervals expressed in milliseconds. The array index is the GPIO number. Each GPIO has two debounce
intervals, one for rising edges and one for falling edges. Each interval may be assigned an integer value in the range
[0:255]; set to 0 to disable debounce. Example: DbTime[3].Falling=20 will apply 20 ms debounce to all falling
edges on GPIO3.

u8 DataTrigSelect

Configure hardware trigger for data reports.

EN 0 0 0 R/F SEL2 SEL1 SEL0

EN Trigger enable: 1 = enable; 0 = disable.

R/F Edge type: 1= rising; 0 = falling.

SEL GPIO identifier in range [0:7].

This configures a GPIO to act as a data report trigger. When the specified edge is detected, the module will send a
data report over USB. For example: set DataTrigSelect=0x88+4 to send data reports upon rising edges of
GPIO4. Note: When using a GPIO to trigger data reports, it is recommended to allow at least 200 ms between
consecutive trigger edges.

u8 PinDirections

Pin direction control flags: 1=input; 0=output. It is recommended to program unused pins as outputs.

u8 BiasEnables

Pin bias enable flags: 1=enable bias resistor; 0=disable bias resistor. A flag will be ignored if the corresponding
GPIO is an output.

u8 BiasPolarities

Pin bias voltage control: 1=pull-up to +3.3V; 0=pull-down to 0V. A flag will be ignored if the corresponding GPIO is
an output or its pin bias is disabled.

3.6.1.4 S2218_GPIO_SETTINGS

This structure indicates the operating modes and control states of all GPIOs.

S2218_GPIO_CONFIG Config

Operating modes of all GPIOs.

u8 OutputStates

Output state flags. These flags indicate the programmed logic states of all GPIOs. Note: A flag will indicate the pin's
physical output condition only if the GPIO is an output.

S2218_GPIO_PAIR CapEnables

Edge capture enable flags. These flags indicate, for each edge type of each GPIO, whether event capturing is enabled
for that edge type.

2218 Instruction Manual 25 API

3.6.2 Functions

3.6.2.1 s2218_SetGpioOutputs

int s2218_SetGpioOutputs(int devaddr, u8 states);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

states
Bit flags (one bit per GPIO) which indicate the desired output levels of all GPIOs: 1=output high (3.3 V); 0=output
low (0 V).

Description

This function programs the output voltage levels on all GPIOs. Note that it does not affect the voltage levels on GPIO
pins that are configured as inputs.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Program GPIO7 and GPIO1 to 3.3V, all others to 0V
int errcode = s2218_SetGpioOutputs(0, 0x82);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);

3.6.2.2 s2218_GetGpioInputs

int s2218_GetGpioInputs(int devaddr, u8 *states);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

states
Buffer to receive bit flags (1 bit per GPIO) which indicate the logic levels detected at all GPIO pins: 1=high (3.3 V);
0=low (0 V).

Description

This function returns the debounced logic levels detected at the GPIO pins. The logic levels of the GPIOs are stored in
states.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

2218 Instruction Manual 26 API

Example

// Read and display GPIO pin states
u8 states;
int errcode = s2218_GetGpioInputs(0, &states);
if (errcode != S2218_ERR_OK)
 printf(“ERROR!”);
else {
 int gpio;
 for (gpio = 0; gpio < 8; gpio++, states >>= 1)
 printf(“GPIO %d state = %d\n”, gpio, states & 1);
}

3.6.2.3 s2218_SetGpioConfig

int s2218_SetGpioConfig(int devaddr, S2218_GPIO_CONFIG *cfg);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

cfg
Configuration settings for all GPIOs. See section 3.6.1.3 for details.

Description

This function programs the operating modes of all GPIOs. Before calling this function, the cfg structure must be filled
with the desired configuration settings.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Configure all GPIOs
S2218_GPIO_CONFIG cfg = {0,}; // Create config struct and zero all members.
cfg.PinDirections = 0x07; // Config GPIO-GPIO2 as inputs; others as outputs.
cfg.BiasEnables = 0x06; // Enable bias resistors on GPIO1 and GPIO2.
cfg.BiasPolarities = 0x04; // Pull-up resistor on GPIO2; pull-down on GPIO1.
cfg.DbTime[2].Rising = 20; // GPIO2 rising edge debounce = 20 ms.
cfg.DataTrigSelect = 0x82; // Use GPIO2 falling edges to trigger data reports.

if (s2218_SetGpioConfig(0, &cfg) != S2218_ERR_OK) // Activate the configuration
 printf(“ERROR!”);

3.6.2.4 s2218_GetGpioSettings

int s2218_GetGpioSettings(int devaddr, S2218_GPIO_SETTINGS *cfg);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

cfg
Buffer for GPIO configuration and control state information. See section 3.6.1.4 for details.

2218 Instruction Manual 27 API

Description

This function reads the configuration modes and control states of all GPIOs and copies them to cfg.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

Example

// Read and display GPIO capture enables
S2218_GPIO_SETTINGS cfg;
if (s2218_GetGpioSettings(0, &cfg) != S2218_ERR_OK)
 printf(“ERROR!”);
else {
 int gpio;
 for (gpio = 0; gpio < 8; gpio++)
 printf(“GPIO%d capture enables: RisingEdge=%d FallingEdge=%d\n”, gpio,
 (cfg.CapEnables.Rising >> gpio) & 1,
 (cfg.CapEnables.Falling >> gpio) & 1);
}

3.7 Edge capture
The module can automatically detect debounced GPIO edges and, when an edge event is detected, send a GPIO event
report to your computer. Every report includes a timestamp that indicates when the event occurred and bit flags that indicate
which edges were detected. Call s2218_GpioCapEnable to selectively enable or disable event capturing for all GPIOs.
To read the current capture enables of all GPIOs, call s2218_GetGpioSettings.

The API stores GPIO event reports in a FIFO buffer so that the application program won't miss rapid back-to-back reports.
To receive event notifications, the application must call s2218_WaitForGpioEvent, which returns the oldest report in
the FIFO. Upon FIFO overflow, the oldest report will automatically be dropped from the FIFO to make space for the
newest report. Each report includes the total number of dropped reports since the module booted; this is the only indication
of dropped reports.

3.7.1.1 s2218_GpioCapEnable

int s2218_GpioCapEnable(int devaddr, S2218_GPIO_PAIR *enables);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

enables
Edge capture enable flags: 1=enable; 0=disable.

Description

This function configures the capture enables of all GPIO edges. Before calling the function, enables must be filled
with flags that specify the capture enable for all edges. For each edge, set the corresponding flag to '1' to enable
capturing or '0' to disable capturing.

Return value

The function returns S2218_ERR_OK if successful, or a non-zero error code if a problem was detected.

2218 Instruction Manual 28 API

Example

// Enable capturing of GPIO2 rising edges and GPIO2-GPIO4 falling edges
// and disable capturing on all other edges
S2218_GPIO_PAIR enables; // gpio 76543210
enables.Rising = 0x04; // 00000100
enables.Falling = 0x1C; // 00011100
if (s2218_GpioCapEnable(0, &enables, 1) != S2218_ERR_OK)
 printf(“ERROR!”);

3.7.1.2 s2218_WaitForGpioEvent

int s2218_WaitForGpioEvent(int devaddr, S2218_GPIOREPORT *report, int tmax);

Arguments

devaddr
Device address. This must match the settings of the module's rotary switch as described in section 2.2.1.

report
Buffer for received GPIO event report.

tmax
Maximum time to wait for the report, in milliseconds.

Description

This function fetches the oldest report from the GPIO event FIFO and stores it in report. It will return immediately if
a report is available in the FIFO or tmax=0, otherwise it will block until a report arrives or tmax has elapsed.

To implement non-blocking (i.e., polled) operation, set tmax=0; this will cause the function to return immediately
even if the FIFO is empty. To disable timeouts, set tmax=S2218_INFINITE_WAIT; this will cause the function to
block until a report is available in the FIFO.

Return value

The function will return S2218_ERR_OK if a report was successfully fetched. If tmax elapses before a report becomes
available, or if tmax=0 and the FIFO is empty, the function will return S2218_ERR_SIG_TIMEOUT.

If another thread closes the module (by calling s2218_CloseDevice) while a caller is waiting in this function, the
wait will be canceled and this function will immediately return ERR_DEVICE_CLOSED.

Example

// Event-driven operation: Block until a report is available in the FIFO.
S2218_GPIOREPORT report;
int errcode = s2218_WaitForGpioEvent(0, &report, S2218_INFINITE_WAIT);
if (errcode == S2218_ERR_OK)
 DisplayGpioEventReport(&report);
else
 printf(“ERROR!”);

// Polled operation: Fetch report if one is available, but don't block if FIFO is empty
S2218_GPIOREPORT report;
int errcode = s2218_WaitForGpioEvent(0, &report, 0); // Check for events without blocking
if (errcode == S2218_ERR_OK) // if alarm report was fetched
 DisplayGpioEventReport(&report);
else if (errcode == S2218_ERR_SIG_TIMEOUT) // else if FIFO is empty
 printf(“No GPIO events captured”);
else // else must be an error
 printf(“ERROR!”);

2218 Instruction Manual 29 API

// Display a GPIO event report.

void DisplayGpioEventReport(S2218_GPIOREPORT *report)
{
 int gpio;
 u16 mask = 1;

 printf(“GPIO edges at time = %d.%3d:\n”, report->Event.Timestamp.s, report->Event.Timestamp.ms);

 for (gpio = 0; gpio < 8; gpio++, mask <<= 1) {
 if (report.Flags.Rising & mask) printf(“gpio%d rising edge\n”, gpio);
 if (report.Flags.Falling & mask) printf(“gpio%d falling edge\n”, gpio);
 }
}

2218 Instruction Manual 30 API

Chapter 4: Specifications

4.1.1 General specifications

Parameter Specification

Sensor
interface

Channels Number 8

Sensor type Configurable per channel

ADC Type Integrating

Conversion time 16.67 ms, nominal

Sampling rate Aggregate 45 samples/s

Per channel 5.6 samples/s (all channels active)

Input Type Differential voltage

Differential voltage range -5 to +5 V

CMV range -5 to +5 V

CMRR 78 dB @ ≤ 60 Hz, min

Absolute maximum voltage ±20 V

Input impedance 100 MΩ, nominal

Excitation
(pulsed)

RTD / 400 Ω range 1.3 mADC

Thermistor / other Ω ranges 5 VDC || 4 KΩ

GPIO Channels Number 8

Type 3.3 V logic, non-isolated

Pin directions Configurable per channel

Power output
(VCC33)

Voltage +3.3 V ±3%

Current 1 20 mA maximum

Input Debounce interval Configurable per channel, 0 to 255 ms in 1 ms steps

Edge detection 1 ms minimum pulse width

Voltage range 0 to VCC33 (not 5 V tolerant)

Logic '0' voltage 0.7 V maximum

Logic '1' voltage 2.25 V minimum

Leakage current ±1 µA maximum (w/ pull-up and pull-down disabled)

Pull-up resistance 13 KΩ typical @ 25 °C

Pull-down resistance 66 KΩ typical @ 25 °C

Output Logic '0' voltage 0.4 V maximum

Logic '1' voltage 2.4 V minimum

Current 1 10 mA maximum (source or sink)

System

Interface Type USB 2.0 high-speed

Power Source USB

Consumption 2 W maximum (400 mA @ 5 VDC)

Temperature Operating 0 to 70 °C

Storage -25 to 85 °C

2218 Instruction Manual 31 Specifications

Notes:
1. The sum of the currents flowing in VCC33 and GPIO pins must not exceed 20 mA.

4.1.2 Sensor specifications

Sensor
Range Accuracy

Output data
scaling/bitType Code

Disabled channel 0 n/a n/a n/a

DC voltage

1 ±5 V 400 µV 200 µV

2 ±500 mV 30 µV 20 µV

3 ±100 mV 30 µV 5 µV

Resistance

4 0 to 400 Ω 0.04 Ω 0.02 Ω

5 0 to 4 KΩ 0.25 Ω 0.125 Ω

6 0 to 600 KΩ 130 Ω 31 Ω

T
he

rm
oc

ou
pl

e

B 7 0 to 1820 °C 3.3 °C 0.1 °C

C 8 0 to 1820 °C 2.1 °C

E 9 -270 to 990 °C 0.8 °C

J 10 -210 to 760 °C 0.6 °C

K 11 -270 to 1360 °C 1.0 °C

N 12 -270 to 1347 °C 0.9 °C

T 13 -270 to 400 °C 0.6 °C

S 14 0 to 1760 °C 3.0 °C

R 15 0 to 1760 °C 2.8 °C

T
he

rm
is

to
r

10 KΩ
44006 / 44031

16 -55 to 62 °C
62 to 126 °C
126 to 150 °C

0.01 °C
0.025 °C
0.008 °C

0.01 °C

R
T

D

Pt 100, α = 0.385 17
18

-200 to 400 °C
-200 to 800 °C

0.2 °C
0.2 °C

0.0125 °F (~0.007 °C)
0.05 °C

Pt 100, α = 0.392 19
20

-200 to 400 °C
-200 to 800 °C

0.2 °C
0.2 °C

0.0125 °F (~0.007 °C)
0.05 °C

Ni 200, α = 1.098 21 -60 to 180 °C 0.08 °C 0.05 °C

Ni 1000, α = 4.4 22 -50 to 70 °C 0.02 °C 0.05 °C

Cu 10, α = 0.039 23 0 to 125 °C 0.5 °C 0.1 °C

Current loop 25 4-to-20 mA 0.02 % 0.01 %
(4 mA=0%, 20 mA=100%)

2218 Instruction Manual 32 Specifications

Chapter 5: Limited warranty

Sensoray Company, Incorporated (Sensoray) warrants the Model 2218 hardware to be free from defects in material and
workmanship and perform to applicable published Sensoray specifications for two years from the date of shipment to
purchaser. Sensoray will, at its option, repair or replace equipment that proves to be defective during the warranty period.
This warranty includes parts and labor.

The warranty provided herein does not cover equipment subjected to abuse, misuse, accident, alteration, neglect, or
unauthorized repair or installation. Sensoray shall have the right of final determination as to the existence and cause of
defect.

As for items repaired or replaced under warranty, the warranty shall continue in effect for the remainder of the original
warranty period, or for ninety days following date of shipment by Sensoray of the repaired or replaced part, whichever
period is longer.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of
the package before any equipment will be accepted for warranty work. Sensoray will pay the shipping costs of returning to
the owner parts that are covered by warranty. A restocking charge of 25% of the product purchase price will be charged for
returning a product to stock.

Sensoray believes that the information in this manual is accurate. The document has been carefully reviewed for technical
accuracy. In the event that technical or typographical errors exist, Sensoray reserves the right to make changes to
subsequent editions of this document without prior notice to holders of this edition.

The reader should consult Sensoray if errors are suspected. In no event shall Sensoray be liable for any damages arising out
of or related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, SENSORAY MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND
SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES CAUSED BY FAULT OR NEGLIGENCE ON THE
PART OF SENSORAY SHALL BE LIMITED TO THE AMOUNT THERETOFORE PAID BY THE CUSTOMER.
SENSORAY WILL NOT BE LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS, USE OF
PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF.

2218 Instruction Manual 33 Limited warranty

	Chapter 1: Introduction
	1.1 Functional overview
	1.1.1 Sensor interfaces
	1.1.2 Digital I/Os

	Chapter 2: Installation and Operation
	2.1 Installation overview
	2.2 Back panel
	2.2.1 Device address switch
	2.2.2 Status indicators

	2.3 GPIO connections
	2.4 Isothermal bay
	2.5 Analog connections
	2.5.1 Best practices
	2.5.2 RTDs, thermistors and resistors
	2.5.2.1 Two-wire circuit
	2.5.2.2 Four-wire circuit

	2.5.3 Thermocouples
	2.5.4 Voltage

	2.6 Measurement noise
	2.6.1 Warm-up noise
	2.6.2 Other noise

	Chapter 3: API
	3.1 Overview
	3.1.1 Error codes

	3.2 Admin functions
	3.2.1 s2218_OpenApi
	3.2.2 s2218_CloseApi
	3.2.3 s2218_OpenDevice
	3.2.4 s2218_CloseDevice
	3.2.5 s2218_ErrString
	3.2.6 s2218_GetApiVersion
	3.2.7 s2218_GetDeviceVersions

	3.3 Analog configuration
	3.3.1 s2218_SetSensorType
	3.3.2 s2218_SetOpenSensorValues
	3.3.3 s2218_GetAnalogConfig

	3.4 Data acquisition
	3.4.1 Data reports
	3.4.2 Stream control
	3.4.3 Functions
	3.4.3.1 s2218_SetTrigConfig
	3.4.3.2 s2218_GetTrigConfig
	3.4.3.3 s2218_SetTrigEnable
	3.4.3.4 s2218_GetTrigEnable
	3.4.3.5 s2218_WaitForDataReport
	3.4.3.6 s2218_ReadDeviceTemp

	3.5 Alarms
	3.5.1 s2218_SetLoThreshold
	3.5.2 s2218_SetHiThreshold
	3.5.3 s2218_SetLoLimitEnable
	3.5.4 s2218_SetHiLimitEnable
	3.5.5 s2218_SetLoAlarmEnable
	3.5.6 s2218_SetHiAlarmEnable
	3.5.7 s2218_WaitForLimitAlarm

	3.6 GPIO
	3.6.1 Data structures
	3.6.1.1 Flag byte
	3.6.1.2 S2218_GPIO_PAIR
	3.6.1.3 S2218_GPIO_CONFIG
	3.6.1.4 S2218_GPIO_SETTINGS

	3.6.2 Functions
	3.6.2.1 s2218_SetGpioOutputs
	3.6.2.2 s2218_GetGpioInputs
	3.6.2.3 s2218_SetGpioConfig
	3.6.2.4 s2218_GetGpioSettings

	3.7 Edge capture
	3.7.1.1 s2218_GpioCapEnable
	3.7.1.2 s2218_WaitForGpioEvent

	Chapter 4: Specifications
	4.1.1 General specifications
	4.1.2 Sensor specifications

	Chapter 5: Limited warranty

